
JANUARY 2018 1

Web Authentication Approaches & Their Resistance
Against MITM Attacks: A Comparative Analysis

Ioannis Gkourtzounis
Department of Computing, The University of Northampton,

Park Campus, Boughton Green Road, NN2 7AL, Northampton, UK
ioannisgk@live.com

Abstract—Today more and more websites are sharing resources
and services with their users. From Web APIs to Service Oriented
Architectures, web applications are exposed globally and security
breaches have important negative consequences. Web security
has become crucial to e-businesses and proper authentication
and authorization lie at the heart of their defenses. In this
paper we analyze and compare the most widely used authen-
tication approaches: HTTP Basic Authentication, HTTP Digest
Authentication, OAuth 1.0a and OAuth 2.0 frameworks. Finally,
we present practical examples of authentication implementations
under Man in The Middle attack scenarios and evaluate the
security aspects of each approach, the role of the channel of
communication and the role of cryptography in web security.

Keywords—Web security, authentication, authorization, Basic
Authentication, HTTP Digest, OAuth 1.0, Oauth 2.0, Man in The
Middle attack, cryptography, SSL/TLS.

I. INTRODUCTION

Today, Facebook, Google and Twitter are just some of
the websites that share resources by offering Application
Programming Interfaces (APIs) to third parties [1]. Service
Oriented Architectures (SOA) [2] and Web APIs helped in
the evolution of cloud computing, where businesses provide
services to consumers in on-demand basis, and allow developer
access to certain functionalities of their services [3].

The web is a complex platform that makes available services
and applications, but with many different aspects regarding
security considerations [4]. Business applications are acces-
sible from anywhere and this exposure means that security
vulnerabilities will inevitably be uncovered and exploited [5].
One of the most worrying aspects of web security today
is that deep technical knowledge is not even required to
attack a system [6]. As a result, security threats have serious
negative consequences to businesses, harming their finance and
reputation [7, 8].

In this paper we examine the fundamental ideas of web
security and compare the most widely used authentication
approaches. We analyze each approach, point out its strengths
and weaknesses and then present some practical examples
of web authentication implementations under Man in the
Middle (MITM) attack scenarios. Our purpose is to evaluate
the resistance of those approaches in a comparative analysis.
Then, we will present our findings and discuss about possible
solutions.

II. BACKGROUND

In order to make the web more secure we follow some pro-
cesses, best practises, and implement certain technologies to
ensure that web applications work in a reliable and predictable
way. This is the concept of web security in general, and
Garfinkel et al. [9] point out its three main aspects: we need to
secure (i) the web server and its data, (ii) the information that
travel across the communication medium and (iii) the clients
and their data.

Let us see the main objectives of security. First, individ-
uals should control what information can be collected and
by whom. Confidential information should not be available
to unauthorized parties. Second, the system must work as
expected without unauthorized intervention. Third, the system
must be always available to authorized users. Furthermore,
establishing identities, verifying trusted users and their actions
are also very important [10-12]. Authentication and authoriza-
tion concepts are at the heart of web security, especially in
large distributed systems [13]. We will now examine them
in more detail along with their underlying communication
protocols.

Generally, authentication is the process of permanently
accepting the truth of some claim or message. We can accom-
plish a high level of authentication if the message is highly
confidential [14, 15]. Its main forms are: individual, identity
and attribute authentication. So, we can define authentication
as the process of establishing a specific level of confidence that
(i) an identifier refers to a specific individual, (ii) an identifier
refers to an identity or (iii) an attribute applies to a specific
individual [16]. Confirming the identity of a web client or user
is an example of web authentication.

Authorization is the series of actions to determine what an
individual is allowed to do. An appropriate authority decides
to allow or deny a request for an authorization decision [16].
It specifies that a user is allowed to exercise a privilege, like
accessing resources, based on his identity, that was confirmed
during authentication [17, 18]. The authorization rules can be
complex and require that we know the identity of the initiator
and, depending on the system, the identity of other entities,
like the service provider [19]. These rules form the security
policy and their goal is to protect sensitive information or
resources from unauthorized access. Granting permissions and
assigning roles to web clients or users is an example of web
authorization.

The web is made up of clients, servers and an underlying



JANUARY 2018 2

mechanism of exchanging messages or resources. Hypertext
Transfer Protocol (HTTP) is a stateless protocol that controls
the sequential message exchange between clients and servers
[20, 21]. The client requests a resource on the server and
the server responds with response headers and an optional
response body in HTML [22, 23]. HTTP is easy to use
but it is based on plain text messages, thus making user
authentication unsecured and vulnerable to attacks [24]. So,
HTTPS was developed, providing three security guarantees:
server authentication, message integrity, and message con-
fidentiality [25]. HTTPS is based on the Transport Layer
Security1 (TLS) Protocol, a Public Key Infrastructure (PKI)
and Certificate Authorities (CAs) that identify web servers
[26]. CAs are trusted organizations that sign digital certificates,
associating a website’s public key with its domain name [26,
27]. Symmetric keys are then used to encrypt data and transmit
them through a secure channel [28]. However, as Naylor et
al. [29] show, HTTPS adds noticeable performance costs to
networks compared to HTTP.

The procedure of how SSL/TLS protocol operates in a
client-server TCP connection has the following steps: (i) the
client starts the SSL handshake by sending the SSL/TLS
version that is is running, the set of algorithms (cipher suite)
it can use and the compression methods that it supports, (ii)
the server checks the highest SSL/TLS version supported by
both and selects a cipher suite and optionally a compression
method, (iii) the server sends its certificate to the client and
the client checks if it is digitally signed by a trusted CA, by
validated the chain of all certificates between the root CA and
the server, (iv) both parties compute the keys for the symmetric
key encrypted communication, (v) the client sends to the server
the Message Authentication Code (MAC), that will be used for
authentication (vi) the server verifies the MAC, the handshake
ends and now the client and server can communicate securely.
Some examples of the symmetric key algorithms that are used
in SSL/TLS are AES, RC2, RC4, DES and 3DES.

Next, we will mention ways that hackers can use to exploit
a system. Nisha et al. [30] bring to our attention the most
common network attack techniques: eavesdropping, tamper-
ing, spoofing, hijacking and capture/replay. Wireless networks
are more vulnerable to eavesdropping [31], tampering, and
spoofing, where fake data are created to deceive the victim
[32]. Session hijacking takes place when an attacker gets a
client’s session information and uses it to authenticate [33].
In capture/replay, a stream of data is recorded and later sent,
in an attempt to create harmful consequences. While all those
network attacks are essentially modes of MITM attacks, we
need to find ways to defend against those malicious actions.

III. AUTHENTICATION APPROACHES

In this section we will examine the most common authen-
tication approaches, the way they are implemented and how
they are used, and present their advantages and disadvantages.

1Transport Layer Security protocol is the successor of Secure Sockets Layer
protocol.

Fig. 1. Basic Authentication process. The server decodes the encoded string,
gets the ”username:password” string and if the credentials are valid, it gives
access to the client [63].

A. HTTP Basic Authentication
In HTTP Basic Authentication [34-36] we identify a user

or web client based on his username and password. When
a client needs to access a resource, it sends an HTTP re-
quest with a header field called ”Authorization” and the
”username:password” credentials, encoded in Base642 plain
text format. The server examines the username and password
against the ones in the database and if they are confirmed
a status code 200 is sent in the response headers. From
this moment the client is authenticated. Otherwise, a ”401
Authorization Required” code is sent with a header field
”WWW-Authenticated” and a name of the realm, a specific
resource on the server (Fig. 1).

As the username and password are not encrypted or hashed,
we can use Basic Authentication over HTTPS to protect the
sensitive data. Basic Authentication provides a simple and
fast way for user authentication. It does not require login
pages, handshakes, cookies or session identifiers, but it is
vulnerable to hijacking and capture/replay attacks, especially
over HTTP. Also, allowing the server to store passwords, can
not be considered the safest strategy as the server may be
compromised and a hacker may be able to decrypt them.

B. HTTP Digest Authentication
HTTP Digest authentication [36-38] is designed to be more

secure than Basic Authentication over HTTP. The client sends
a request and receives a challenge response with the following
information: the realm name, the authentication algorithm
name, and a nonce, which is a random and unique string that is
sent on every request. When the client receives the challenge,
it generates a digest string based on three steps: (i) it creates an
MD5 hash3 of the HTTP method and the path of the request,
(ii) it creates MD5 hash of the information from the challenge,
(iii) it creates MD5 hash of the username, password and its

2Base64 is a binary to text encoding scheme that represents binary data in
ASCII string format.

3The MD5 algorithm is a popular used hash function that maps the original
data and produces a hash value.



JANUARY 2018 3

Fig. 2. Digest Authentication process. The server receives the digest string
and if the credentials are valid, it gives access to the client [64].

own nonce and sequence number. The resulting digest string is
sent to the server. Now the server, from the stored MD5 hashes
of the username and password, along with the other values,
computes the final digest string and if the data is correct then
a status code 200 is sent. In case the strings do not match, a
”401 Authorization Required” code is sent back to the client
(Fig. 2).

Generating a different server nonce on every request and
storing only MD5 hashes of the credentials, raise the se-
curity level of the process, especially over HTTPS. Some
capture/replay attacks can be prevented if the server nonce
includes a timestamp. On the other hand Digest Authentication
is hard to implement, it is still insecure over HTTP and it is
vulnerable to MITM attacks that can ”downgrade” it to Basic
Authentication. The server stores hashed credentials in MD5.
Yet, MD5 can be tampered and collisions can easily be created
by a attacker [39]. Another disadvantage of Digest Authentica-
tion is that it generates more traffic, so it is considered costly.

C. OAuth 1.0a Framework
Open Authorization (OAuth) [40-42] was designed for web-

site authorization only, but it became a popular framework
for authentication and authorization in web services and ap-
plications. Version 1.0 was vulnerable to a session attack
on the request token, so a revision (OAuth 1.0a) included a
verification code to the final request.

The basic idea is that an end-user or application (resource
owner) owns server resources and clients (consumers) can
access those resources on his behalf by making requests
to a server (service provider). First a consumer asks for a
request token from the service provider with the following
parameters: a consumer key, a signature method, a consumer
secret (encrypted signature string), a timestamp and a nonce.
The consumer key and consumer secret will be verified by

Fig. 3. OAuth 1.0a framework workflow. The service provider verifies the
the consumer key and consumer secret, and generates a request token for the
consumer. User grants authorization and consumer receives the verifier [65].

the service provider and he will generate a request key and
request token. With this information the consumer redirects
the user to the authorization page where he can grant access
to the consumer. The consumer receives a verifier parameter
and with the request token he can now receive an access token
from the service provider which will allow him to proceed
with further requests. This way, users can authorize third-party
access, without exposing their username and password to the
network (Fig. 3).

Clients are required to generate new signatures on every
request, so if an attacker could access the tokens, he would
not be able to change the credentials and that made OAuth
1.0a very secure, even when not running over HTTPS. It was
the best way to provide security without an underlying secure
channel.

OAuth 1.0a was popular and Twitter, Dropbox and Flickr
used it as it was a great way for integrating social networks in
a secure and reliable way. The major drawback was that the
implementations became very complicated because developers
for client applications had to write code supporting different
algorithms, like HMAC-SHA1 and RSA-SHA1. HMAC-SHA1
is a key-hashed MAC that uses the SHA1 hash function and
a secret key to verify the data integrity and authentication
of a message. RSA-SHA1 is a public key cryptographic
algorithm for encryption and authentication that uses the SHA1
hash function. OAuth 1.0a also required multiple requests for
the authentication and authorization process to be completed.
Different kinds of implementations added in the overall com-
plexity, like two-legged and three-legged, for two parties and
three parties respectively.



JANUARY 2018 4

Fig. 4. OAuth 2.0 framework workflow. The client requests authorization
from the resource owner and receives a grant. Authorization server checks the
grant and sends an access token back to the client.

D. OAuth 2.0 Framework
In OAuth 2.0 [43-46], one of the most popular authentication

and authorization frameworks, we have four roles: (i) the
resource owner (end-user or application) grants access to server
resources, (ii) the resource server hosts the resources and
responds to requests, (iii) the client makes the requests to
access the resources, and (iv) the authorization server issues
access tokens to the client after authenticating the resource
owner and obtaining authorization.

The following steps take place: the client requests authoriza-
tion directly from the resource owner or via the authorization
server, the client receives a grant of a specific type4. Next,
the client sends the grant to the authorization server, gets
authenticated and receives an access token. The client can
request access to protected resources from the resource server,
by sending the access token with his request (Fig. 4).

In case of an application acting as the client, there are two
main flows that it can get the access token to access server
resources. In implicit grant flow the user is redirected to the
service provider for authentication. After authentication an
access token is sent to the application, but in authorization
code grant flow, the application gets a code, which he sends
back to the service provider along with a secondary secret
code. If the data is valid, the application receives the access
token and it is now ready to access the resources by sending
the access token as a parameter in the subsequent requests.

OAuth 2.0 introduced some very important changes trying
to neutralize the negative characteristics of OAuth 1.0a. The
clients get a single token, the signature is not encrypted but the
use over HTTPS became compulsory. Leaving the encryption
of the requests to SSL/TLS was a sensible thing to do and
it improved the implementation. The token now expires after
a specific time period and needs to be refreshed. This made
OAuth 2.0 more secure. Refresh tokens are issued by the
authorization server so the client can obtain a new access

4The grant types in OAuth 2.0 are: authorization code, implicit, resource
owner username and password, and client credentials.

Fig. 5. MITM attack on a target in the same wireless network using zANTI.
We can see the username (user1@test.com) and password (111111) entered
by the user on the POST request parameters.

token when one is expired. OAuth 2.0 is considered expensive
in computational resources because generating and validating
signatures require a lot of effort. Still, due to the security it
provides, some of the biggest companies have embraced it,
like Facebook, Google and GitHub.

IV. COMPARATIVE ANALYSIS

For our comparative analysis, we take into account the
characteristics of each authentication approach and we also
examine their resistance in MITM attacks. The criteria for the
comparison are how easy it is for an attacker to access the user
credentials in plain text, known vulnerabilities and the results
of our attacks. The overall security of each authentication
implementation against MITM attacks over HTTP and over
an encrypted channel of communication, will be evaluated. We
will also point out which approaches are easy to implement
and which are slow and generate a lot of traffic.

In the following examples we examine the consequences
of MITM attacks to various authentication implementations.
The characteristics [47-50] of this kind of attacks are: (i)
the attacker intercepts the communication between the client
and the server, (ii) he impersonates the server so the client
is connected to his device directly, and (iii) the attacker
can capture the client’s credentials while the communication
appears normal. A hacker can launch the MITM attack by
ARP cache poisoning5, by DNS spoofing or session hijacking
[51]. These examples will demonstrate how authentication
approaches behave against MITM attacks and whether the user
credentials will be exposed or remain hidden.

5ARP (Address Resolution Protocol) poisoning is basically IP and MAC
address forging, combined with cache update policy exploits.



JANUARY 2018 5

Fig. 6. MITM attack on a RESTful web service with Packet Capture. The
resource owner and client credentials are visible on the first POST request,
on the response we can see the tokens and on the second POST request we
can also see the user’s credentials.

A. MITM Attack on a login page over HTTP
Our first example is a client, connected in a wireless

network, who accesses a login page over HTTP. The security of
the login page and the authentication process is implemented
in the application level. For our attack we used zANTI from
Zimperium [52], a free tool used for professional penetration
testing. After research, we found three websites that used
HTTP for the login process: NOMARX.YPES.GR, ACCI.GR
and GSRT.GR. We selected our target, enabled MITM attack,
and from that time the client was connected to the internet
via zANTI, our man in the middle. On all three websites the
usernames and passwords were easy to extract as they were in
the headers in plain text format (Fig. 5).

B. MITM Attack on a RESTful web service over HTTP
For our second example we implemented a RESTful web

service [53, 54] and added authentication and authorization
security per OAuth 2.0 specifications, with the exception of

Fig. 7. MITM attack on eBay authentication service over HTTPS with Packet
Capture. We can see the user id (user1@test.com) and password (111111) in
plain text, in the last section of the POST request.

using it over HTTP and not HTTPS. We followed this approach
to see the strength of the authentication protocol independently
from the channel of communication. For this attack we used a
free Android tool on Google Play called Packet Capture [55].
When Packet Capture is installed on an Android device, it
acts as a MITM, intercepting all communication. We created,
installed and run an application that uses our RESTful web
service client and started capturing packets. We logged in to the
web service from our application and saw that Packet Capture
had captured all the requests and the information were visible
in plain text, such as usernames, passwords and tokens (Fig.
6).

C. MITM Attack on a Device Communicating over HTTPS

The last example was about examining HTTPS security, so
we tested the login procedures of eBay and Amazon. We used
Packet Capture to install a custom certificate on the Android
device. It acted as a MITM but this time the communication
was encrypted. So, Packet Capture tool sets up a CA to sign
a custom certificate that associates a server with its public
key. Client’s applications and browsers can not verify invalid
certificates and display a warning to the user [47]. If the user
accepts, the forged certificate is considered trusted and the
attacker can intercept the communication [56, 57]. We enabled
the tool and then tried to login to eBay and Amazon. We
found that all information were decrypted by the tool and the
username and password were visible in the requests (Fig. 7).



JANUARY 2018 6

Fig. 8. Comparative analysis table. Four authentication approaches assessed
against MITM attacks and other criteria.

D. Findings

We compared four authentication approaches, tested their
implementations against MITM attack scenarios and have
some important findings to present. First, Basic, Digest and
OAuth 2.0 approaches should be used only over an encrypted
channel of communication. Second, the only secure approach
over HTTP is considered the OAuth 1.0a framework. Third,
the implementation difficulty plays an important role in the
broader adoption of an authentication approach by companies
and developers, and OAuth 1.0a is very complex and hard to
implement. And that is the reason why most companies chose
OAuth 2.0 for securing their web services. In summary, Basic
Authentication is simple, fast and secure only over HTTPS,
Digest Authentication is more secure over HTTP but still
has vulnerabilities, OAuth 1.0a is hard to implement but very
secure, and OAuth 2.0 is simple and very secure over HTTPS
(Fig. 8).

Furthermore, launching a successful MITM attack on Basic
Authentication requires little effort from the attacker. In the
case of Digest Authentication more effort is needed due
to hashed passwords, while in OAuth 1.0a it is very hard
to expose the credentials and in OAuth 2.0 the SSL/TLS
encryption has to be bypassed by making the user accept and
install a custom CA. If the user does not accept the custom
CA, the data are safe on the encrypted SSL/TLS channel.

From the above, we can conclude how important cryptog-
raphy is, in authentication and authorization procedures. Even

if we apply the best and most secure approach, all data are
visible in plain text messages over HTTP and this gives an
attacker the opportunity to analyze them and figure out ways
to bypass the current security. Using an SSL/TLS protocol
means that the client sends data to a verified server and that
all messages between the client and server are authenticated
and encrypted. Communicating over an encrypted channel adds
another line of defense against malicious actions. Only when
the user accepts a custom CA and installs it, this line of defense
can be compromised.

Cryptography algorithms like AES, RC2, RC4, DES and
3DES are used to ensure information confidentiality. As we
can see, cryptography is a very important asset in web secu-
rity, especially where sensitive information travel across the
Internet.

V. CONCLUSIONS

Basic Authentication is easy to implement but it is unsafe,
especially if used over HTTP. Digest Authentication is more
secure by including hashing and timestamps but still vulnerable
to attacks. OAuth 1.0a was designed to offer great security
even when communicating over an unencrypted channel. It
gained significant popularity but its major drawback was the
complexity of the implementation. OAuth 2.0 was simpler,
leaving the encryption to SSL/TLS, and added expiring tokens
for greater security. Making its implementation simpler, it
attracted big companies and most of them use OAuth 2.0 for
authentication and authorization today.



JANUARY 2018 7

We saw that intercepting communication over HTTP, even
if using OAuth 2.0, is very easy with the use of free tools. We
also found that if a user accepts a CA warning, an attacker
can decrypt his HTTPS requests and extract all information,
usernames and passwords. Even the strongest authentication
approach over HTTPS can be defeated by a well orchestrated
MITM attack and a novice user decision. However, we should
always bulletproof the sensitive data travelling between clients
and servers by using only encrypted channels of communi-
cation. Cryptography is essential to web security and ensures
information confidentiality.

Many countermeasures have been proposed for improv-
ing HTTPS security, like HTTPAS (HTTP Active Secure
framework) [48] that maximizes the use of available trusted
CAs, HTTPSLock [58] by not letting users accept invalid
certificates, and HSTS (HTTP Strict Transport Security) [59,
60] that forces HTTPS communication only. The extension of
TLS based on Quantum Cryptography, has also been proposed
since 2010, that allows key exchange with absolute security
[61]. Alternatively, we can abstract security critical code and
describe it in Security Policy Definition Language (SPDL)
specification documents [62]. As Garfinkel et al. [9] empha-
size, cryptography is the fundamental technology to encrypt
and protect our data and we should improve it constantly.

REFERENCES

[1] M. Maleshkova, C. Pedrinaci and J. Domingue, ”Investigating Web APIs
on the World Wide Web”, 2010 Eighth IEEE European Conference on
Web Services, 2010.

[2] V. Henrich, E. Hinrichs, M. Hinrichs, and T. Zastrow, ”Service-Oriented
Architectures: From Desktop Tools to Web Services and Web Applica-
tions”, Multilinguality and Interoperability in Language Processing with
Emphasis on Romanian, pp.978-973, 2010.

[3] N. Sultan, ”Cloud computing for education: A new dawn?”, International
Journal of Information Management, vol. 30, no. 2, pp. 109-116, 2010.

[4] D. Akhawe, A. Barth, P. Lam, J. Mitchell and D. Song, ”Towards a
Formal Foundation of Web Security”, 2010 23rd IEEE Computer Security
Foundations Symposium, 2010.

[5] J. Fonseca and M. Vieira, ”Mapping software faults with web security
vulnerabilities”, 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), 2008.

[6] M. Andrews, ”Guest Editor’s Introduction: The State of Web Security”,
IEEE Security Privacy Magazine, vol. 4, no. 4, pp. 14-15, 2006.

[7] H. Matbouli and Q. Gao, ”An overview on web security threats and
impact to e-commerce success”, 2012 International Conference on
Information Technology and e-Services, 2012.

[8] L. Qian, J. Wan, L. Chen and X. Chen, ”Complete Web Security Testing
Methods and Recommendations”, 2013 International Conference on
Computer Sciences and Applications, 2013.

[9] S. Garfinkel and G. Spafford, Web security, privacy, and commerce.
Beijing [etc.]: O’Reilly, 2002.

[10] W. Stallings, Data and computer communications. Upper Saddle River,
NJ: Pearson Prentice Hall, 2007.

[11] D. Geer, ”Taking steps to secure web services”, Computer, vol. 36, no.
10, pp. 14-16, 2003.

[12] K. Knorr and S. Rhrig, ”Security of Electronic Business Applications:
Structure and Quantification”, Electronic Commerce and Web Technolo-
gies, pp. 25-37, 2000.

[13] A.H.M. Emam, ”Additional authentication and authorization using
registered email-ID for cloud computing”, International Journal of Soft
Computing and Engineering, vol. 3, no. 2, pp.110-113, 2013.

[14] G. Bella and S. Bistarelli, ”Information Assurance for security proto-
cols”, Computers Security, vol. 24, no. 4, pp. 322-333, 2005.

[15] G. Bella, ”What is correctness of security protocols?”, J. UCS, vol. 14,
no. 12, pp.2083-2106, 2008.

[16] S. Kent and L. Millett, Who goes there? Authentication Through the
Lens of Privacy. Washington, D.C.: National Academies Press, 2003.

[17] B. Thuraisingham, C. Clifton, A. Gupta, E. Bertino and E. Ferrari,
”Directions for Web and e-commerce applications security”, Proceedings
Tenth IEEE International Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WET ICE), 2001.

[18] D. Inclezan and M. Sobolewski, ”Security Policy Management in
Federated Computing Environments”, 2007.

[19] B. Hartman, D. Flinn, K. Beznosov and S. Kawamoto, Mastering Web
services security. Indianapolis, Ind.: Wiley Technology Pub., 2003.

[20] P. Davern, N. Nashid, A. Zahran and C. Sreenan, ”HTTP Acceleration
over High Latency Links”, 2011 4th IFIP International Conference on
New Technologies, Mobility and Security, 2011.

[21] P. Davern, N. Nashid, C. Sreenan and A. Zahran, ”HTTPEP: a HTTP
Performance Enhancing Proxy for Satellite Systems”, International Jour-
nal of Next-Generation Computing, vol. 2, 2011.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. and Berners-Lee, ”Hypertext transfer protocol–HTTP/1.1”, No. RFC
2616, 1999.

[23] A. Jawad, ”The Fundamentals of HTTP/2”, 2016.
[24] K. Lee, H. Yeuk, S. Kim and K. Yim, ”Security Assessment on

User Authentication by an HttpSendRequest Hooking in an HTTP
Client”, 2013 Seventh International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, 2013.

[25] T. Dierks and E. Rescorla, ”The Transport Layer Security (TLS)
Protocol Version 1.2”, RFC 5246, 2008.

[26] Z. Durumeric, J. Kasten, M. Bailey and J. Halderman, ”Analysis of the
HTTPS certificate ecosystem”, Proceedings of the 2013 conference on
Internet measurement conference - IMC ’13, 2013.

[27] J. Amann, M. Vallentin and R. Sommer, ”Extracting Certificates from
Live Traffic: A Near Real-Time SSL Notary Service”, 2012.

[28] A. Ranjan, V. Kumar and M. Hussain, ”Security analysis of TLS authen-
tication”, 2014 International Conference on Contemporary Computing
and Informatics (IC3I), 2014.

[29] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munaf, K. Papagiannaki and P. Steenkiste, ”The Cost of the ”S”
in HTTPS”, Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies - CoNEXT ’14,
2014.

[30] V. Nisha, L. Aliyar and A. Ali, ”An overview of cryptographic solutions
to web security”, 2010 IEEE International Conference on Computational
Intelligence and Computing Research, 2010.

[31] Y. Zou and G. Wang, ”Intercept Behavior Analysis of Industrial
Wireless Sensor Networks in the Presence of Eavesdropping Attack”,
IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 780-
787, 2016.

[32] E.W. Felten, D. Balfanz, D. Dean and D.S. Wallach, ”Web spoofing:
An internet con game”, Software World, vol. 28, no. 2, pp.6-8, 1997.

[33] N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen, ”Ses-
sionShield: Lightweight Protection against Session Hijacking”, ESSoS,
11, pp.87-100, 2011.

[34] J. Reschke, ”The’Basic’HTTP Authentication Scheme”, No. RFC 7617,
2015.

[35] D. Peng, C. Li and H. Huo, ”An extended UsernameToken-based ap-
proach for REST-style Web Service Security Authentication”, 2009 2nd
IEEE International Conference on Computer Science and Information
Technology, 2009.

[36] P. Sturgeon, Build APIs You Won’t Hate. [S.l.]: Leanpub, 2015.
[37] F. Fiedler, ”HTTP Authentication: Basic and Digest Access Authenti-

cation RFC 2617 Obsoletes RFC 2069”, 2015.



JANUARY 2018 8

[38] R. Shekh-Yusef, D. Ahrens and S. Bremer, ”HTTP Digest Access
Authentication”, No. RFC 7616, 2015.

[39] X. Wang and H. Yu, ”How to Break MD5 and Other Hash Functions”,
Lecture Notes in Computer Science, pp. 19-35, 2005.

[40] E. Hammer-Lahav, ”The OAuth 1.0 protocol”, No. RFC 5849, 2010.
[41] E. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher and P. Tague, ”OAuth

Demystified for Mobile Application Developers”, Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security - CCS ’14, 2014.

[42] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P.
Aiumsupucgul and A. Panya, ”Authorization mechanism for MQTT-
based Internet of Things”, 2016 IEEE International Conference on
Communications Workshops (ICC), 2016.

[43] D. Hardt, ”The OAuth 2.0 Authorization Framework”, No. RFC 6749,
2012.

[44] T. Lodderstedt, M. McGloin and P. Hunt, ”OAuth 2.0 Threat Model
and Security Considerations”, No. RFC 6819, 2013.

[45] M. Darwish and A. Ouda, ”Evaluation of an OAuth 2.0 protocol imple-
mentation for web server applications”, 2015 International Conference
and Workshop on Computing and Communication (IEMCON), 2015.

[46] D. Aas, ”Authentication and Authorization for Native Mobile Applica-
tions using OAuth 2.0”, 2013.

[47] X. Brustoloni and J. Brustoloni, ”Hardening Web browsers against
man-in-the-middle and eavesdropping attacks”, Proceedings of the 14th
international conference on World Wide Web - WWW ’05, 2005.

[48] P. Zhou and X. Gu, ”HTTPAS: active authentication against HTTPS
man-in-the-middle attacks”, IET Communications, vol. 10, no. 17, pp.
2308-2314, 2016.

[49] R. Oppliger, R. Hauser and D. Basin, ”SSL/TLS session-aware user
authentication Or how to effectively thwart the man-in-the-middle”,
Computer Communications, vol. 29, no. 12, pp. 2238-2246, 2006.

[50] S. Stricot-Tarboton, S. Chaisiri and R. Ko, ”Taxonomy of Man-in-
the-Middle Attacks on HTTPS”, 2016 IEEE Trustcom/BigDataSE/ISPA,
2016.

[51] S. Kaka, V. Sastry and R. Maiti, ”On the MitM vulnerability in mobile
banking applications for android devices”, 2016 IEEE International
Conference on Advanced Networks and Telecommunications Systems
(ANTS), 2016.

[52] ”zANTI - Mobile Security Risk Assessment — Zim-
perium”, Zimperium.com, 2017. [Online]. Available:
https://www.zimperium.com/zanti-mobile-penetration-testing.
[Accessed: 18- Nov- 2017].

[53] S. Prez, F. Durao, S. Meli, P. Dolog and O. Daz, ”RESTful, Resource-
Oriented Architectures: A Model-Driven Approach”, Lecture Notes in
Computer Science, pp. 282-294, 2011.

[54] L. Richardson and S. Ruby, RESTful web services. Beijing: O’Reilly,
2007.

[55] ”Packet Capture - Android Apps on Google
Play”, Play.google.com, 2017. [Online]. Available:
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapturehl=en.
[Accessed: 18- Nov- 2017].

[56] F. Callegati, W. Cerroni and M. Ramilli, ”Man-in-the-Middle Attack to
the HTTPS Protocol”, IEEE Security Privacy Magazine, vol. 7, no. 1,
pp. 78-81, 2009.

[57] K. Benton and T. Bross, ”Timing Analysis of SSL/TLS Man in the
Middle Attacks”, Computing Research Repository, 2013.

[58] A. Fung and K. Cheung, ”HTTPSLock: Enforcing HTTPS in Un-
modified Browsers with Cached Javascript”, 2010 Fourth International
Conference on Network and System Security, 2010.

[59] J. Hodges, C. Jackson and A. Barth, ”HTTP Strict Transport Security
(HSTS)”, No. RFC 6797, 2012.

[60] M. Kranch and J. Bonneau, ”Upgrading HTTPS in mid-air: An Empir-
ical Study of Strict Transport Security and Key Pinning”, Proceedings
2015 Network and Distributed System Security Symposium, 2015.

[61] M. Elboukhari, M. Azizi and A. Azizi, ”Improving TLS Security By
Quantum Cryptography”, International Journal of Network Security Its
Applications, vol. 2, no. 3, pp. 87-100, 2010.

[62] D. Scott and R. Sharp, ”Abstracting application-level web security”,
Proceedings of the eleventh international conference on World Wide Web
- WWW ’02, 2002.

[63] P. Kalkman, ”Basic Authentication on a WCF REST Service
- CodeProject”, Codeproject.com, 2018. [Online]. Available:
https://www.codeproject.com/Articles/149738/Basic-Authentication-
on-a-WCF-REST-Service. [Accessed: 08- Jan- 2018].

[64] P. Kalkman, ”Digest Authentication on a WCF REST Service
- CodeProject”, Codeproject.com, 2018. [Online]. Available:
https://www.codeproject.com/Articles/162726/Digest-Authentication-on-
a-WCF-REST-Service. [Accessed: 08- Jan- 2018].

[65] ”Spring Social Reference”, Docs.spring.io, 2018.
[Online]. Available: https://docs.spring.io/spring-
social/docs/1.1.0.RELEASE/reference/htmlsingle/sectionoauth2ServiceProviders.[Accessed :
08− Jan− 2018].


