
Jenkins Migration
GUIDE

Table of Contents
Calling Codefresh pipelines from Jenkins Jobs 1
Calling Jenkins jobs from Codefresh pipelines 3
Migrating from Jenkins to Codefresh 5
Migrating Jenkins freestyle jobs 6
Migrating Jenkins pipelines 10
Checking out source code 11
Step conditions 12
Migrating Jenkins credentials 14
Migrating Jenkins shared libraries 16
Migration of Jenkins pipelines that create Docker images 16
Building Docker images 17
Running commands in created containers 18
Pushing Docker images 19
Migration of Jenkins pipelines that deploy to Kubernetes 22

1
 |

 J
e

n
k

in
s

M

ig
r

a
t

io
n

Migration from Jenkins to Codefresh
Codefresh offers a superset of the capabilities offered by Jenkins, and therefore you can
fully replace a Jenkins solution using only Codefresh on its own.

During that migration period, it is very easy to make both solutions work together. This
allows you to move gradually new CI/CD tasks to Codefresh and still keep the existing
functionality in Jenkins jobs.

Calling Codefresh pipelines from Jenkins Jobs
This is the most common scenario for the migration period. The CI part (i.e. code
packaging) is still in Jenkins, where actual deployments happen with Codefresh (the CD
part)

First, you need to create a Codefresh API token so that Jenkins can connect to your
Codefresh account.

Once you have the token, enter it in Jenkins as a global Credential.

Calling a Codefresh pipeline from a Jenkins Job

Storing the Codefresh API token in Jenkins

https://codefresh.io/docs/docs/integrations/codefresh-api/#authentication-instructions
https://jenkins.io/doc/book/using/using-credentials/

2
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

Now you can create any declarative or scripted Jenkins pipeline that uses the token and
the Codefresh CLI to call Codefresh pipelines from Jenkins.

Here is a very simple example:

Jenkinsfile

pipeline {
 agent {
 docker {
 image ‘codefresh/cli:latest’
 args ‘--entrypoint=””’
 }
 }
 environment {
 CODEFRESH_API_TOKEN= credentials(‘codefresh-token’)
 }
 stages {
 stage(‘Calling Codefresh pipeline’) {
 steps {
 sh ‘codefresh auth create-context --api-key $CODEFRESH_API_
TOKEN’
 sh ‘codefresh run my-first-project/basic-build -t my-trigger -b
master’
 }
 }
 }
}

Run the Jenkins job and it will also trigger a Codefresh pipeline:

Calling a Codefresh pipeline in a Jenkins step

https://codefresh-io.github.io/cli/

3
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

In the logs of the Jenkins job, you will see the Codefresh logs (the Codefresh CLI automatically
shows logs in standard output).

Of course, if you visit the Codefresh Web UI you will also see the running pipeline. With this
kind of integration, it is very easy to create Jenkins Jobs that compile/package code and
add a step onto them that calls Codefresh for deployment.

Calling Jenkins jobs from Codefresh pipelines.
This is the opposite scenario. As you move more functionality into Codefresh, it might make
sense to have a Codefresh pipeline that actually calls Jenkins jobs for tasks that are not
migrated yet.

First, you need to create a Jenkins API token so that Codefresh can authenticate to your
Jenkins instance. This is done from your User Settings in the Jenkins UI. Give your token
any name that reminds you of its purpose. The name itself is arbitrary.

Viewing Codefresh logs from Jenkins

Calling a Jenkins Job from a Codefresh pipeline

https://codefresh.io/docs/docs/configure-ci-cd-pipeline/monitoring-pipelines/
https://jenkins.io/blog/2018/07/02/new-api-token-system/

4
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

Once you have the token, you can use the Codefresh plugin for triggering Jenkins Jobs in
any pipeline like this:

codefresh.yml

version: ‘1.0’
steps:
 RunJenkins:
 title: Triggering Jenkins Job
 image: codefresh/cf-run-jenkins-job
 environment:
 - JENKINS_URL=${{JENKINS_URL}}
 - JENKINS_USER=${{JENKINS_USERNAME}}
 - JENKINS_TOKEN=${{JENKINS_TOKEN}}
 - JENKINS_JOB=${{JENKINS_JOB}}

The value of the variables can be stored either in your Codefresh shared configuration or
directly in the pipeline:

Then when you launch the Codefresh pipeline the remote Jenkins Job will be triggered as
well.

Jenkins API token

Jenkins Jobs variables

https://github.com/codefresh-io/plugins/blob/new-pipeline/plugins/run-jenkins-job/README.md
https://codefresh.io/docs/docs/configure-ci-cd-pipeline/shared-configuration/
https://codefresh.io/docs/docs/configure-ci-cd-pipeline/pipelines/#creating-new-pipelines

5
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

It is possible to mix both scenarios at the same time (Codefresh pipelines that call Jenkins
Jobs and vice-versa).

Migrating from Jenkins to Codefresh
Now that you know how to mix pipelines from both platforms, it is helpful to understand
how you can migrate all your Jenkins Jobs to Codefresh. In most cases, several actions
that require custom scripts in Jenkins (or plugins/shared libraries) are already integrated
into the core Codefresh platform. Here are some high-level differences between the two
platforms:

Trigger remote Jenkins Job

Feature Jenkins Codefresh

Architecture VM based container-based

Pipeline definition Groovy YAML

Tool installation installed on build node dynamically launched

Plugin mechanism Java/Groovy using Jenkins API Docker image (any programming language)

Plugin installation Central (requires admin access) Per pipeline (no admin access needed)

Docker agent builds Extra plugin Built-in

Kubernetes agent builds Extra plugin Built-in

Docker commands Manually run in pipelines Built-in pipeline steps

Access to Kubectl External plugin Built-in

Kubernetes deployments External plugin Built-in

https://codefresh.io/docs/docs/configure-ci-cd-pipeline/introduction-to-codefresh-pipelines/
https://codefresh.io/docs/docs/codefresh-yaml/what-is-the-codefresh-yaml/
https://steps.codefresh.io/

6
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

It is important to understand that when you are switching to Codefresh you get a set of
higher level abstraction for your builds:

• Unlike Jenkins, Codefresh automatically has a distributed fleet of build nodes and
manages all builds on its own.

• With Codefresh you don’t need to install anything on the build nodes (in fact you don’t
even have SSH access on them). All build tools are automatically launched in pipelines
as Docker images.

• It is possible in Codefresh to use the same tools in the same pipeline with a different
version without any special configuration (e.g. use Java 5 and Java 8 in the same
pipeline).

• Codefresh plugins are used per pipeline by simply mentioning them. There is nothing
to install centrally (such as Jenkins plugins or shared libraries). Different teams can use
different tools on their pipeline without affecting each other.

• Codefresh plugins are just Docker images with predefined inputs/outputs. They can
be programmed in any programming language (not just Java/Groovy) and are not tied
to Codefresh in any way (i.e. there is no need to know the Codefresh API for writing a
Codefresh plugin).

• Jenkins pipelines can be free-style (VM based), scripted (VM/container-based) or
declarative (VM/container based) meaning that there are at least 5 ways on how you
can write your pipeline. In Codefresh there is only way (declarative/container-based).

• Jenkins pipelines are connected to a single git repository. Codefresh pipelines can be
connected to multiple git triggers which themselves are connected to git repositories.
Therefore a Codefresh pipeline can be reused for multiple projects.

• Specifically for building Docker images, Codefresh includes a private Docker registry
and automatically pushes Docker images from successful builds there. There is nothing
to set up to achieve this behavior. You can also connect external Docker registries.

• Specifically for Kubernetes deployments, Codefresh automatically sets up kubectl
access in pipelines from connected clusters. There is no configuration needed
to achieve this behavior. Codefresh also has several built-in ways for Kubernetes
deployments and a dedicated UI dashboard to see what your cluster is doing.

• Specifically for Helm deployments, Codefresh includes a private Helm repository and
several Helm dashboards.

Migrating Jenkins freestyle jobs
If you have freestyle Jenkins Jobs (or are still using Jenkins 1.x), it is very easy to migrate
your builds to Codefresh. In Jenkins you are accustomed to:

1. Install a programming tool on the Jenkins node.

2. call it directly in a build step.

https://codefresh.io/docs/docs/configure-ci-cd-pipeline/triggers/git-triggers/
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/
https://codefresh.io/docs/docs/docker-registries/external-docker-registries/
https://codefresh.io/docs/docs/deploy-to-kubernetes/add-kubernetes-cluster/
https://codefresh.io/docs/docs/deploy-to-kubernetes/deployment-options-to-kubernetes/
https://codefresh.io/docs/docs/deploy-to-kubernetes/deployment-options-to-kubernetes/
https://codefresh.io/docs/docs/deploy-to-kubernetes/manage-kubernetes/
https://codefresh.io/docs/docs/yaml-examples/examples/helm/

7
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

For Codefresh a similar process would be the following:

1. Find a Docker image in Dockerhub or create one by yourself that has the tools that
you need

2. Use a freestyle step and run the exact same command in a Codefresh pipeline

For example this Jenkins job…

…can be easily converted to a Codefresh pipeline like this:

codefresh.yml

version: ‘1.0’
steps:
 my_jar_compilation:
 title: Compile/Unit test
 image: maven:3.5.2-jdk-8-alpine
 commands:
 - mvn package
 my_node_app:
 title: Running unit tests
 image: node:11
 commands:
 - npm run test

Unlike Jenkins, Codefresh does not need any global installation of tools beforehand.

Jenkins freestyle job

https://codefresh.io/docs/docs/codefresh-yaml/steps/freestyle/

8
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

In Codefresh you can just use one or more Docker images in your pipeline. The tool
versions will be launched only while the pipeline is active. Once the pipeline finished
all Docker images that took part in it are discarded. The Codefresh build node has only
Docker installed and nothing else. This means that you can easily mix and match tool
versions. Here is a Codefresh pipeline that uses multiple versions of Java and Node.

codefresh.yml

version: ‘1.0’
steps:
 PackageMyNode1App:
 title: Packaging Node application 1
 stage: packaging
 image: node:11.1
 working_directory: ./dashboard
 commands:
 - echo “My Node version is”
 - node --version
 - npm install
 PackageMyNode2App:
 title: Packaging Node application 2
 stage: packaging
 image: node:9.3.0-slim
 working_directory: ./website
 commands:

Jenkins Tool installation - not needed with Codefresh

9
 |

J

e
n

k
in

s

M
ig

r
a

t
io

n

 - echo “My Node version is”
 - node --version
 - npm install
 RunUnitTests:
 title: Running Unit tests
 image: maven:3.6.1-jdk-11
 working_directory: ./backend
 commands:
 - java -version
 - mvn test
 PackageBackend:
 title: Compile/Unit test
 image: maven:3.5.2-jdk-8-alpine
 working_directory: ./backend
 commands:
 - java -version
 - mvn package -Dmaven.test.skip

Meanwhile, another team might have a different pipeline that is using different versions of
Maven and/or Java. Each team can decide on the exact version needed just by changing
the Codefresh YAML.

It should be easy to see now that by migrating from Jenkins to Codefresh, a lot of Jenkins
problems are simply eliminated:

• You do not need to be an admin to install programming tools anymore,

• Tools are defined per pipeline instead of being preloaded centrally,

• Multiple versions of the same tool can be used on the same pipeline (or different
pipelines),

• Upgrading a tool to a new version is trivial (just change the docker tag in the freestyle
step),

• You don’t need to label build nodes anymore with specific labels that show which tools
they contain,

• All public Dockerhub images can be used with zero changes in a Codefresh step.

Notice that for several popular tools, Dockerhub already contains several images.

• Maven

• Gradle

• Node

• Python

• Terraform

• Packer

https://codefresh.io/docs/docs/codefresh-yaml/what-is-the-codefresh-yaml/
https://hub.docker.com/_/maven
https://hub.docker.com/_/gradle/
https://hub.docker.com/_/node/
https://hub.docker.com/_/python/
https://hub.docker.com/r/hashicorp/terraform/
https://hub.docker.com/r/hashicorp/packer/

10

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

• Sonar

• Nexus

• Helm

• Kubectl

• gcloud

• Ansible

• Azure CLI

• AWS CLI

Of course, you can create your own Docker image with the exact tools that you want and
then use it from the private Codefresh registry or any other registry in your pipeline.

Migrating Jenkins pipelines
In the case of Jenkins pipelines, things are a bit more complicated because there is not a
single way anymore on how to structure your pipelines. First of all, the best-case scenario
is when you have declarative Jenkins pipelines that already use Docker images for stage
execution.

Jenkinsfile

pipeline {
 agent none
 stages {
 stage(‘Example Build’) {
 agent { docker ‘maven:3-alpine’ }
 steps {
 echo ‘Hello, Maven’
 sh ‘mvn --version’
 }
 }
 stage(‘Example Test’) {
 agent { docker ‘openjdk:8-jre’ }
 steps {
 echo ‘Hello, JDK’
 sh ‘java -version’
 }
 }
 }
}

In this case, there is a 1-1 mapping between Jenkins stages and Codefresh steps as you can

https://hub.docker.com/r/skilldlabs/sonar-scanner/
https://hub.docker.com/r/sjeandeaux/nexus-cli/
https://hub.docker.com/r/codefresh/kube-helm/tags
https://hub.docker.com/r/codefresh/kubectl/
https://hub.docker.com/r/google/cloud-sdk/
https://hub.docker.com/u/ansible
https://hub.docker.com/r/microsoft/azure-cli/
https://hub.docker.com/r/mesosphere/aws-cli/
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/

11

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

simply convert each stage into a Codefresh step using the respective Docker image. The
Jenkins pipeline above can be converted to a Codefresh pipeline with a series of freestyle
steps:

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Example Build
 image: maven:3-alpine
 commands:
 - echo ‘Hello, Maven’
 - mvn --version
 my_second_step:
 title: Example Test
 image: openjdk:8-jre
 commands:
 - echo ‘Hello, JDK’
 - java -version

The final Codefresh pipeline will even look like the original Jenkins one.

If you don’t use Docker containers in your Jenkins pipeline, then you need to follow the
same advice as the previous section (i.e. find a Docker image that has the tools you need
and create your own freestyle step in Codefresh).

Checking out source code
In Jenkins 1.x pipelines, code is automatically checked out by Jenkins when the pipeline
starts. In Jenkins 2.x pipelines you are free to insert your own git steps inside a Job:

Direct migration from Jenkins to Codefresh

12

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Jenkinsfile

node {
 stage(‘First Project’) {
 git ‘https://github.com/nodegui/react-nodegui.git’
 }
 stage(‘Second Project’) {
 git url: ‘https://github.com/jglick/simple-maven-project-with-tests.git’
 branch: ‘master’
 }
}

Codefresh has a dedicated git clone step that can be used in a similar manner.

codefresh.yml

version: “1.0”
steps:
 first_project:
 type: “git-clone”
 description: “Cloning first project...”
 repo: “nodegui/react-nodegui”
 revision: “${{CF_BRANCH}}”
 git: github
 second_project:
 type: “git-clone”
 description: “Cloning second...”
 repo: “jglick/simple-maven-project-with-tests”
 revision: “master”
 git: github

You don’t need to define any credentials or tokens, as they are already defined centrally
in the git configuration screen. The CF_BRANCH variable is one of the built-in Codefresh
variables that shows the branch that was used by the git commit as it came from the trigger
attached to the pipeline.

You can also run manually git commands in Codefresh pipelines.

Step conditions
In several cases you want to add conditionals on steps such as the branch that is being
compiled:

https://codefresh.io/docs/docs/codefresh-yaml/steps/git-clone/
https://codefresh.io/docs/docs/integrations/git-providers/
https://codefresh.io/docs/docs/codefresh-yaml/variables/
https://codefresh.io/docs/docs/codefresh-yaml/variables/
https://codefresh.io/docs/docs/configure-ci-cd-pipeline/triggers/git-triggers/
https://codefresh.io/docs/docs/yaml-examples/examples/git-checkout-custom/

13

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Jenkinsfile

pipeline {
 agent any
 stages {
 stage(‘Example Build’) {
 steps {
 echo ‘Hello World’
 }
 }
 stage(‘Example Deploy’) {
 when {
 branch ‘master’
 }
 steps {
 echo ‘Deploying’
 }
 }
 }
}

This can be also configured in Codefresh using step conditionals:

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Example Build
 image: alpine:latest
 commands:
 - echo ‘Hello World’
 my_second_step:
 title: Example Deploy
 image: alpine:latest
 commands:
 - echo ‘Deploying’
 when:
 branch:
 only:
 - master

You can define much more complex conditions using the Codefresh expression language.

https://codefresh.io/docs/docs/codefresh-yaml/conditional-execution-of-steps/
https://codefresh.io/docs/docs/codefresh-yaml/expression-condition-syntax/

14

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Migrating Jenkins credentials
Codefresh contains a central repository for user variables and secrets in the form of shared
configuration. You can also inject variables on a specific project or a specific pipeline.

All injected variables are automatically available to all Codefresh freestyle steps. You don’t
need a special syntax or directive to enable this behavior (unlike Jenkins where you have
to use a withCredentials block or something similar).

In Jenkins you have to explicitly ask for a secret:

Jenkinsfile

pipeline {
 agent any
 stages {
 stage(‘Example’) {
 environment {
 AWS_ACCESS_KEY_ID = credentials(‘jenkins-aws-secret-key-
id’)
 AWS_SECRET_ACCESS_KEY = credentials(‘jenkins-aws-secret-
access-key’)
 }
 steps {
 sh ‘printenv’
 }
 }
 }
}

In Codefresh if you setup your variables in the pipeline settings, then the pipeline itself
needs nothing special.

Pipeline variables

https://codefresh.io/docs/docs/configure-ci-cd-pipeline/shared-configuration/
https://codefresh.io/docs/docs/configure-ci-cd-pipeline/shared-configuration/

15

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

You can simply run the pipeline on its own:

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Example1
 image: alpine:latest
 commands:
 - printenv # Injected variables are always available
 my_second_step:
 title: Example2
 image: alpine:latest
 commands:
 - echo $AWS_ACCESS_KEY_ID
 - echo $AWS_SECRET_ACCESS_KEY

If you want to use a different name for each variable/secret then you can simply assign
them to your desired names:

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Example
 image: alpine:latest
 environment:
 - MY_KEY=${{AWS_ACCESS_KEY_ID}}
 - MY_ACCESS_KEY=${{AWS_SECRET_ACCESS_KEY}}
 commands:
 - echo $MY_KEY
 - echo $MY_ACCESS_KEY

In the example above, even though the secrets are already available as environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, we instead pass them
to the pipeline step as MY_KEY and MY_ACCESS_KEY.

16

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Migrating Jenkins shared libraries
Creating a Jenkins shared library has a lot of challenges:

• The library must be written in Groovy/Java,

• The library must use the Jenkins API,

• It is very hard to write unit tests for it,

• Installing it requires admin access in the Jenkins master.

Codefresh plugins, on the other hand, are just Docker images written in any programming
language.

First of all, look at Dockerhub and see if there is already a utility or CLI that has the same
functionality with your shared library. Codefresh also has a free marketplace for pipeline
steps (which are Docker images essentially).

As a last resort, you need to rewrite your shared library and convert it to a Docker image.
The process is the following:

1. Start from a base image that contains Groovy and any other tool you need.

2. Convert your shared library to a single Groovy executable that reads input from
environment variables and/or files and writes output data to files.

3. Remove all Jenkins specific APIs.

4. Package the image with a simple Dockerfile that just compiles your executable.

Note that there is nothing Codefresh specific to the end-result. You should end up with a
standard Docker image that would be usable in any environment that has Docker installed.

Once you have that image you can use it like any other Codefresh freestyle step as
described in the previous section.

Migration of Jenkins pipelines that create Docker im-
ages
Codefresh has native support for:

1. Building Docker images

2. Running commands inside Docker images

3. Pushing Docker images to different registries

It is important to understand that each Codefresh account also includes a free private
Docker registry. So by using Codefresh you can start pushing Docker images right away.

https://hub.docker.com/
https://steps.codefresh.io/
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/

17

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

If you are using Docker commands directly in your Jenkins file, or prefer to take advantage
of the scripted variant of Docker image management then you can easily convert both
approaches to Codefresh YAML like below:

Building Docker images
The most basic Docker operation is building an image. You will need a Dockerfile and a
directory to use as build context (usually the same folder that contains the Dockerfile).

docker command

docker build . -t my-app-image:1.0.1

Or if you use Jenkins scripted pipelines…

Jenkinsfile

node {
 docker.build(“my-app-image:1.0.1”)
 docker.build(“test-image”, “./tests”)
}

…they will become in Codefresh the following build steps:

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Building My App image
 type: build
 image: my-app-image
 tag: 1.0.1
 my_second_step:
 title: Building My Test image
 type: build
 image: test-image
 working_directory: “./tests”

https://codefresh.io/docs/docs/codefresh-yaml/steps/build/

18

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Running commands in created containers
Sometimes you want to run commands inside a Docker image. Either to have access to
specialized tools or to run tests.

docker command

docker build . -t my-app-image:1.0.1
docker run my-app-image:1.0.1 npm install

Or, if you use Jenkins scripted pipelines…

Jenkinsfile

node {
 def customImage = docker.build(“my-app-image:1.0.1”)

 customImage.inside {
 sh ‘npm install’
 }
}

… they will become in Codefresh the following freestyle steps.

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Building My App image
 type: build
 image: my-app-image
 tag: 1.0.1
 my_second_step:
 title: Install Node dependencies
 image: ${{my_first_step}}
 commands:
 - npm install

Notice that the second pipeline step actually mentions the first one by name as a running
context.

https://codefresh.io/docs/docs/codefresh-yaml/steps/freestyle/

19

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Pushing Docker images
Notice that in Codefresh all connected registries are automatically available to all pipelines.
You don’t need special directives such as withRegistry. All registries can be mentioned by
their name in any push step (and will be used automatically for pulls when an image uses
their domain).

docker command

docker build . -t my-app-image:1.0.1
docker tag my-app-image:1.0.1 registry.example.com/my-app-image:1.0.1
docker push registry.example.com/my-app-image:1.0.1

Or, if you use Jenkins scripted pipelines…

Jenkinsfile

node {
 def customImage = docker.build(“my-app-image:1.0.1”)

 docker.withRegistry(‘https://registry.example.com’, ‘example-registry-
credentials’) {
 customImage.push(“1.0.1”)
 customImage.push(“latest”)
 }
}

…they will become in Codefresh the following push steps.

codefresh.yml

version: ‘1.0’
steps:
 my_first_step:
 title: Building My App image
 type: build
 image: my-app-image
 tag: 1.0.1
 my_second_step:
 title: Pushing image
 type: push
 candidate: ${{my_first_step}}

https://codefresh.io/docs/docs/docker-registries/external-docker-registries/
https://codefresh.io/docs/docs/codefresh-yaml/steps/push/

20

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

 tags:
 - 1.0.1
 - latest
 registry: example-registry

Notice again that the second step pushes the image created by the first one.

Complete Docker pipeline
Here is a full example with a pipeline that builds an image, runs tests, and pushes it to
Dockerhub.

Jenkinsfile

node {
 def app

 stage(‘Clone repository’) {
 checkout scm
 }

 stage(‘Build image’) {
 app = docker.build(“my-app-image:1.0.1”)
 }

 stage(‘Test image’) {
 app.inside {
 sh ‘npm run test’
 }
 }

 stage(‘Push image’) {
 docker.withRegistry(‘https://registry.hub.docker.com’, ‘docker-hub-
credentials’) {
 app.push(“1.0.1”)
 app.push(“latest”)
 }
 }
}

21

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Here is the same pipeline in Codefresh:

codefresh.yml

version: ‘1.0’
steps:
 main_clone:
 type: “git-clone”
 description: “Clone repository”
 repo: “my-account/my-git-repo”
 revision: “${{CF_BRANCH}}”
 git: github
 my_first_step:
 title: Build image
 type: build
 image: my-app-image
 tag: 1.0.1
 my_second_step:
 title: Test image
 image: ${{my_first_step}}
 commands:
 - npm run test
 my_third_step:
 title: Push image
 type: push
 candidate: ${{my_first_step}}
 tags:
 - 1.0.1
 - latest
 registry: dockerhub

Notice that Codefresh has much more context regarding Docker registries and credentials.
The same approach is followed with Kubernetes deployments as we will see in the next
section.

22

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Migration of Jenkins pipelines that deploy to Kuber-
netes
Codefresh has first-class support for Kubernetes deployments. Codefresh can deploy on its
own using different options and no external tools (i.e. Ansible or kubectl) are needed.

Specifically for Kubernetes and Helm, Codefresh has declarative pipeline steps:

codefresh.yml

version: ‘1.0’
steps:
 RunningDeploy:
 title: Kubernetes Deployment
 type: deploy
 kind: kubernetes
 cluster: myDemoGKEcluster
 namespace: production
 service: my-service
 candidate:
 image: ‘my-app-image:1.0.1’
 registry: ‘dockerhub’
 DeployMyChart:
 image: ‘codefresh/cfstep-helm:2.9.1’
 environment:
 - CHART_REF=charts/python
 - RELEASE_NAME=mypython-chart-prod
 - KUBE_CONTEXT=myDemoAKSCluster

As with Docker registries (described in the previous section), Codefresh makes all added
Kubernetes clusters available to all pipelines. You don’t need any special plugin or directive
(such as withKubeConfig) to work with Kubernetes clusters in Codefresh. You can see that
the Codefresh pipeline simply mentions Kubernetes clusters and registries without any
credential information.

Of course, it is also very easy to convert any existing Jenkins pipeline by just using any
image that contains the kubectl executable.

https://codefresh.io/docs/docs/deploy-to-kubernetes/deployment-options-to-kubernetes/
https://codefresh.io/docs/docs/deploy-to-kubernetes/deployment-options-to-kubernetes/
https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/
https://codefresh.io/docs/docs/deploy-to-kubernetes/add-kubernetes-cluster/
https://codefresh.io/docs/docs/deploy-to-kubernetes/add-kubernetes-cluster/

23

|
 J

e
n

k
in

s

M
ig

r
a

t
io

n

Jenkinsfile

node {
 stage(‘Apply Kubernetes files’) {
 withKubeConfig([credentialsId: ‘user1’, serverUrl: ‘https://api.k8s.my-
company.com’]) {
 sh ‘kubectl apply -f my-kubernetes-directory’
 }
 }
}

Codefresh will automatically setup Kube config access to the pipeline behind the scenes.
Zero configuration is needed for this behavior.

codefresh.yml

version: ‘1.0’
steps:
 MyCustomKubectlCommands:
 title: Running Kubectl
 image: codefresh/kubectl
 commands:
 - kubectl config use-context “my-k8s-my-company”
 - kubectl apply -f my-kubernetes-directory

Once you use Codefresh for your deployments you also get access to:

• The Kubernetes Dashboard

• A free built-in Helm repository with each Codefresh account

• The Helm chart dashboard

• The Helm Release dashboard

• The Helm environment dashboard

For some easy templating see also the cf-deploy plugin.

https://codefresh.io/docs/docs/deploy-to-kubernetes/manage-kubernetes/
https://codefresh.io/docs/docs/new-helm/managed-helm-repository/
https://codefresh.io/docs/docs/new-helm/add-helm-repository/
https://codefresh.io/docs/docs/new-helm/helm-releases-management/
https://codefresh.io/docs/docs/new-helm/helm-environment-promotion/
https://codefresh.io/docs/docs/deploy-to-kubernetes/kubernetes-templating/

www.codefresh. io

https://codefresh.io/

	Calling Codefresh pipelines from Jenkins Jobs
	Calling Jenkins jobs from Codefresh pipelines.
	Migrating from Jenkins to Codefresh
	Migrating Jenkins freestyle jobs
	Migrating Jenkins pipelines
	Checking out source code
	Step conditions
	Migrating Jenkins credentials
	Migrating Jenkins shared libraries
	Migration of Jenkins pipelines that create Docker images
	Building Docker images
	Running commands in created containers
	Pushing Docker images
	Migration of Jenkins pipelines that deploy to Kubernetes

