APRIL 2018

Improving NLP Applications with
Neural Networks and Genetic Algorithms:
A Travel Assistant Chatbot Use Case

Ioannis Gkourtzounis
Department of Computing, The University of Northampton,
Park Campus, Boughton Green Road, NN2 7AL, Northampton, UK
ioannisgk@live.com

Abstract—Natural Language Processing applications are in-
creasing rapidly. From chatbots and personal assistants to so-
phisticated software that analyzes and processes natural language,
machines seem to better understand our speech and our texts.
Artificial Intelligence offers Machine Learning techniques that
have produced great results, and a convergence is inevitable.
In this paper we examine how Neural Networks and Genetic
Algorithms can improve Natural Language Processing applica-
tions. We design, implement and test a Travel Assistant Chatbot
application. Throughout the development, we explain in what way
we use a Neural Network and a Genetic Algorithm to achieve
better text classification results. Finally, we present our findings
and discuss about the strengths and weaknesses of our approach.
And as Sophia the Robot said, I can understand speech and
meaning behind words [...] but I am still learning a lot”.

Keywords—Natural Language Processing, Artificial Intelligence,
Machine Learning, Neural Networks, Genetic Algorithms, Chatbots.

I. INTRODUCTION

Today, chatbots and personal assistant applications are in-
creasing rapidly. Natural Language Processing provides soft-
ware engineers with the techniques needed to develop such
applications. Written and spoken language is parsed, words and
sentences are analyzed and transformed. Those systems present
quite impressive results when Machine Learning methods are
incorporated.

Some examples that motivated us to look deeper into the
fields of Natural Language Processing and Machine Learning,
are personal assistants like Google Now and Siri, machine
translation apps like Duolingo, and image classification ap-
plications that use deep Neural Networks. Siri can identify
unknown callers from emails, while Google Now automatically
pulls flight data and offers relevant information. Duolingo
predicts word strength and finds sentences that help practicing
weak words. Those examples clearly show that text can be
broken down to words and their syntactic role and semantic
meaning can be recognized. Image classification implementa-
tions reveal the power of Machine Learning and how Neural
Networks can be trained in order to offer greater efficiency.
Innovations like these led our research, providing valuable
feedback.

In this paper we examine Natural Language Processing and
how Neural Networks and Genetic Algorithms can be used to
improve related applications. After exploring the background
theory, we focus on a Travel Assistant Chatbot use case. We
design, implement and test our application and in the last
section we present our findings and discuss about the strengths
and weaknesses of our approach.

II. THEORETICAL BACKGROUND

A. Natural Language Processing

Speech and language technology relies on formal models,
or representations of knowledge of language at the levels
of phonology and phonetics, morphology, syntax, semantics,
pragmatics and discourse (Jurafsky, 2007; Pustejovsky and
Stubbs, 2012). Natural Language Processing (NLP) is a field
of linguistics and computer science that focuses on processing
natural language. Its main goal is to convert spoken or written
human language into formal data that can be further processed
by computers. Methods that range from assigning probabilities
to words or sequences of words, to full-scale transformation
of sentences into new sentences, are used to analyze, modify,
augment, and generate human language. Most NLP systems
process input via statistical language models that are trained
on observations of natural language using Machine Learning
techniques. For example, word prediction and word completion
models are often developed by collecting large text corpora'
with millions of words (Higginbotham et al., 2012).

The natural language processes include some standard tasks:
Part-Of-Speech tagging (POS), chunking (CHUNK), Named
Entity Recognition (NER) and Semantic Role Labeling (SRL)
(Collobert et al., 2011). POS tagging labels each word with a
unique tag that indicates its syntactic role. Parsing or chunking,
labels segments of a sentence with syntactic constituents such
as noun or verb phrases. NER labels atomic elements in
the sentence into categories, such as "PERSON” or "LOCA-
TION”. SRL aims at giving a semantic role to a syntactic
constituent of a sentence. Another task is stemming, where
words are mapped to some base form, and comes in two

A corpus/corpora is a representative sample of machine-readable texts that
have been produced in a natural communicative setting.

APRIL 2018

NLP System Performance ..y BestPath

- »
4 -~ —

Pragmatics Gurve
(Bag-of-Narratives)

Semantics Curve
(Bag-of-Concepts)

Syntactics Curve
(Bag-of-Words)

1950 2000 2050 2100 Time

Fig. 1. Evolution of NLP research through three different eras or curves
(Cambria and White, 2014).

methods: linguistic/dictionary-based stemming, and Porter-
style stemming. The former has higher accuracy, but higher
implementation and processing costs, and lower coverage.

The evolution of NLP research can be interpreted as the
intersection of three overlapping curves: Syntactics, Semantics,
and Pragmatics curve (Fig. 1). While intelligent behaviors
emerged like Google Now, Watson from IBM and Siri from
Apple, user generated content helped in the performance of
those systems. But with the explosion of this content, web
trolling and opinion spam (Ritter et al., 2011) caused standard
NLP algorithms to be increasingly less efficient. Such systems
will stop relying on word-based techniques and will start
exploiting semantics in order to make the leap from the
Syntactics Curve to the Semantics Curve. Semantics include
common sense and common knowledge, reusable by machines.
These factors will enable NLP systems to properly deconstruct
natural language text into sentiments according to different
contexts. The jump from the Semantics Curve to the Pragmat-
ics Curve will happen when computational models become
more adaptive, open-domain, context-aware, and intent-driven
(Cambria and White, 2014).

NLP has become increasingly powerful and that makes it
possible to capture sentiments more accurately, and semantics
in a more nuanced way. Naturally, many applications seek
improvements by adopting cutting edge NLP techniques, like
financial forecasting (Xing, Cambria and Welsch, 2017). Rev-
olutionary applications of speech and language processing are
used every day, in areas like information extraction, question
answering and summarization, dialogue and conversational
agents, and machine translation (Jurafsky, 2007; Pustejovsky
and Stubbs, 2012).

B. Neural Networks

Machine Learning is the field of Artificial Intelligence
concerned with the development of algorithms which learn
or improve their performance from experience or previous
encounters with data. There are three major types of Machine

Learning algorithms, that are also used in NLP: supervised
learning where input data are labeled, unsupervised learning
that uses unlabeled data, and semi-supervised learning. As
Goldberg (2016) describes, the training networks in Machine
Learning resemble the brains computation mechanism and
are called Neural Networks (NN). A neuron in NN is a
computational unit that has scalar inputs and outputs, and each
input has an associated weight. The neuron multiplies each
input by its weight, and then sums them. It applies a non-linear
function to the result, and passes it to its output. The neurons
are connected to each other, forming a network. Such networks
were shown to be very capable computational devices. If
the weights are set correctly, a neural network with enough
neurons and a non-linear activation function can approximate
a very wide range of mathematical functions (Goldberg, 2016).

Training a NN is done by trying to minimize a loss function
over a training set, using a Gradient Descent’ method. By
repeatedly computing an estimate of the error over the dataset,
computing the gradient with respect to the error, and then
moving the parameters in the opposite direction of the gradient,
the loss is reduced (Gurney, 2014; Goldberg, 2016). One of
the most common techniques to reduce the error in multi-
layer NN is the Back Propagation, where the weights of each
neuron are recalculated. A system based on Machine Learning,
improves its knowledge about the dataset, in order to achieve
better results in the future. There are many software libraries
for Machine Learning and deep NN research available to the
public, like TensorFlow by Google Brain Team (Zaccone,
2016).

There are two major types of NN architectures, that can
be mixed and matched: feed-forward networks and recur-
rent/recursive networks. Feed-forward networks include net-
works with fully connected layers, such as the Multi-Layer
Perceptron (MLP), which includes one or more hidden layers
(Fig. 2), as well as networks with convolutional and pooling
layers (Mehrotra, Mohan and Ranka, 1997). In a feed-forward
NN each input of a neuron is attached to each output in the next
layer. Convolutional NN use convolutions over the input layer
to compute the output. Recurrent/recursive networks accept
continuous input over time and the weights are shared along
the length of the sequence (Hassan and Mahmood, 2018).

MLPs give great results and can be applied successfully in
fields like financial sentiment analysis (Akhtar et al., 2017),
medical decision support systems for heart disease diagnosis
(Yan et al., 2006) and epilepsy treatment (Orhan, Hekim and
Ozer, 2011). Collobert and Weston (2008) implemented a deep
NN architecture for NLP, that was trained with huge databases
(e.g. 631 million words from Wikipedia) and demonstrated
that simultaneously learning tasks can improve the general-
ization performance®. Furthermore, recursive deep learning
models can solve multiple language tasks involving word
and sentence-level predictions of both continuous and discrete
nature (Majewski and Zurada, 2008; Socher, 2014). Various

2Gradient Descent is a first-order iterative optimization algorithm for finding
the minimum of a function, in this case minimizing the error.

3Generalization refers to the ability of an algorithm to be effective across
a range of inputs and applications.

APRIL 2018

L Oulpul
signal

Input First Seeond Ohtput
laver hidden hidden layer
layer layer

Fig. 2. Architectural graph of a Multi-Layer Perceptron with an input signal,
two hidden layers and an output signal.

deep models have become the new state-of-the-art methods for
NLP problems, while supervised learning is the most popular
practice in recent deep learning research for NLP (Young et
al., 2017).

C. Genetic Algorithms

Evolutionary algorithms (EAs) provide a framework for
effectively finding solutions to applications where the search
space is exponentially proportional to the problem dimensions.
The main types of EAs are the Genetic Algorithms (GAs),
Evolutionary Strategies (ES) and Evolutionary Programming
(EP). They are broadly similar but with some differences, like
the selection type and the mutation parameters. EA techniques
can easily and broadly be applied to specific problems.

GAs are search methods based on principles of natural
selection and genetics. GAs encode the potential solutions
of a search problem into finite-length strings (chromosomes)
of alphabets (genes) of certain cardinality (Herrera, Lozano
and Verdegay, 1998). Chattoe-Brown and Edmonds (2017)
present the main flow of GAs as depicted in Fig. 3: (1) we
represent potential solutions to the problem as data structures
(population), (2) we generate a number of solutions, (3) we
evaluate the fitness of each solution, (4) we apply genetic op-
erators (crossover, mutation) to chosen solutions (parents) and
create new solutions (children) to evolve the population, (5)
we repeat steps 3, and 4 until the current population satisfies
a termination condition. Some popular selection methods are
roulette-wheel, stochastic universal selection, tournament and
truncation. The main types of the crossover operator are one-
point, two-point and uniform crossover (Sastry, Goldberg and
Kendall, 2013).

One of the most important advantages of GAs is that they are
parallel in their nature. Other algorithms explore the solution
space in one direction at a time and if the solution is not
suitable, they have to abandon all work previously completed
and start over. However, since GAs have multiple offspring,
they can explore the solution space in multiple directions at
once an if they find an unsuitable solution, they can easily
continue to work on more promising avenues, giving them
a greater chance each run, for finding the optimal solution
(Meghna and Jyoti, 2010). On the other hand, GAs have some
important limitations, like defining a representation for the

Gene

OEEEOE OOECOE S00E0E

Population

Population
IOERCE
OOEECOE
OOmOCOm
DOOmOm Crossover

Evaluation H Selection

Fig. 3. How population, chromosomes, genes and genetic operators are used
in Genetic Algorithms.

problem. The language used to specify candidate solutions
must also be robust and tolerable to random changes.

As Bungum and Gambck (2010) show in their study,
GAs can be used in text summarization to explore a large
search space with an optimal combination of a statistical
sentence scoring rank. In language learning, context-free gram-
mar strings are evaluated on the ability to generate new
strings based on a training set. GAs have been used as a
tool for grammar development by inducing a grammar from
the training set and then using it to evaluate a test set.
Furthermore, these algorithms have been applied to machine
translation systems to find the optimal alignment between
two sentences. Other NLP related applications based on GAs
are document classifiers (Diaz et al., 2018), summarization
systems (Peyrard and Eckle-Kohler, 2016), dialogue systems
and language generation (Lempa, Ptaszynski and Masui, 2016).
Additionally, Manurung, Ritchie and Thompson (2012), with
their implementation showed that meaningful poetic text can
be achieved with the help of GAs. And if we optimize NN and
GAs, by applying a GA for feature or parameter selection, or
by optimizing the connection weights, we can have even more
impressive results.

III. CHATBOT APPLICATION USE CASE

Chatbots have evolved from semi-intelligent agents, to
modern intelligent personal assistants. They take advantage
of Artificial Intelligence and Machine Learning, and their
knowledge base and conversational properties are comparable
to humans (Mittal et al., 2016). The latest NLP techniques
made them more effective and human-like (Hirschberg and
Manning, 2015; Abdul-Kader and Woods, 2015; Shah, La-
hoti and Lavanya, 2017). They use NLP tagging like POS,
CHUNK, NER and SRL to fill slots*, and they are trained
with a large enough dataset (corpus) in order to be able to
categorize user input (Jurafsky and Martin, 2017).

4The set of slots specifies what the system needs to know, and the filler of
each slot is constrained to values of a particular semantic type.

APRIL 2018

One of the most impressive developments in NLP applica-
tions and Chatbots is SophiaS, a social humanoid robot de-
veloped by the Hong Kong-based company Hanson Robotics.
Sophia tries to simulate human conversation utilizing NLP,
Machine Learning, cloud and blockchain technologies.

A. Problem Statement

Focusing on how NLP is used on Chatbot applications,
we will apply the techniques discussed earlier on our Travel
Assistant Chatbot use case. We assume that a client requests
a web application that processes the input text of a user and
produces a suitable answer, according to the semantic category
that the input is assigned to. There will be 10 categories, such
as “General Travel Support”, "Booking a Flight Online” and
”Complaining about a Tour”. The system should parse the user
input, analyze the text and decide which label/category is the
most appropriate. Furthermore, the Chatbot should have the
ability to fill ”slots”, so that it can remember the name of the
user, the requested destination and the duration of his trip and
ask him only the missing information. When all information
are gathered, the user will be presented with the details of
his trip. The slot filling process will only be valid if the user
requests for flight or hotel, and not when he is complaining
about a tour (business logic or criteria).

B. Analysis & Design

The requirements for the Travel Assistant Chatbot are as
follows: (1) the system should categorize user input, depending
on its semantic content, (2) the system should recognize
information that can fill predefined slots, like name, desti-
nation, duration, etc., (3) the system should ask the missing
information, but present booking confirmation only if the user
input falls into a specific set of categories. In order to tackle
the first requirement, which is essentially a text classification
problem, we used a NN in order to train the system on a
training dataset, that is assigned to the predefined categories.
We also used a GA to determine the optimal settings for
training the NN, like the number of hidden layers, the number
of neurons for each layer and the number of iterations. For
recognizing specific tags on the user input, we performed basic
NLP tasks like POS and NER tagging. For the last requirement,
we combined all the information and configured the business
logic (e.g. when to show the booking details) in our algorithm.

For the development of our web application we chose
the Java Spring Framework, a well established application
framework fully compatible with the Model-View-Controller
(MVQC) pattern. The user interface consists of two web pages.
On the main page, the user can select specific settings to train
the NN. He can also execute the GA, which is responsible
for finding the optimal settings for training the NN, and he
can also compare the results of the GA and the manually
trained network. The chat page will provide the results on
the test dataset of the NN, which are the overall probability
(the certainty of the system that the test data is assigned to the
correct category), and the percentage of the correct predictions.

Shttp://www.hansonrobotics.com/robot/sophia/

POS, NER Tagging

| Pre-processing
stage

Text Category
Cassification with NI

If Information is NO

ff Category Satisfies
Business Logic

Filled

Processing

" Stage

Form Specific

Question(s) Get Booking Details

Show Predefined Show Predefined Show Predefined
Response Based on Response Based on Response Based on
Category + Questions Category ategory + Booking Detail

Fig. 4. Travel Assistant Chatbot flowchart with the pre-processing stage and
the processing stage, where the system applies the business logic or criteria.

When the user inputs his messages on the chat page, the
system will tag the input and save the following information:
name, location, date, duration and budget. The NN will also
classify the input according to a set of predefined categories.
This is the pre-processing stage. In the processing stage, if
some information is missing, a question (or more) will be
formed to request this missing information. If all slots are
filled, then the system will present the booking confirmation
only if the user input falls into a specific set of categories,
and not if, for example, the user is complaining about a
tour. Finally, the Chatbot will respond according to a set of
predefined responses, assigned to the input category, and it
will also add either the question formed earlier, or the booking
details, depending on the business logic (Fig. 4).

In order to develop the application according to Spring MVC
standards, we created 4 packages: Controllers, Repositories,
Services and Utils. The Controllers package includes the
HomeController class which processes, saves data to the model
and opens jsp views. It also gets the appropriate POS and
NER tags and creates, trains and tests the NN with the use
of the appropriate services classes. The DatasetDAO class in
the Repositories package contains the hardcoded datasets for
training and testing the NN, along with the dialogue responses
and the predefined categories. Of course in a production
application, all data should have been parsed and saved to a
database first. In the Services package the DatasetService gets
the training set and test set from the DatasetDAO, and creates
the corpus and binary arrays that will be the input for the NN.

APRIL 2018

<<Java Class>>
(9 ProcessResponse

«com joannisgk.nipwebproject. services

& ProcessResponse()
@ getResponse(String, String, String, String, String, String): String

= randint{int,int):int

@ getNerTags Map(List=String=, List=String=): Map=5tring, String=

-processResponse
0.1

-datasetService [0..1

=<Java Class>>
(9 DatasetService
com.ioannisgk . nipwebproject. services

& DatasetService()
@ getAlResponsesMap():Map<String, String[]=
@ getAlResultsList() List<String=
@ getinputheurons () :int
@ getOutputMNeurons():int
@ getTestDataset():DataSet
@ getTrainingDataset():DataSet
@ createResultDatasetBinaryList(): List<doublel]=>

SetService

@ createTrainingDk yList():Li] d

ice

@ createTestDatasetBinaryList(): List=doublel]> o
@ createCustomDatasetBinary(String):double[]

B createSentencereatures(String[l, String(]) double]]
= createDatasetCorpus():String[]

@ prepareStringData(String) :String

= removeDuplicateWords (String) : String

=<<Java Class>> <<Java Class>>
(3 HomeController (® ExecuteGA
com_icannisghk nipwebproject controliers com.icannisgk nipwebproject. services

& HomeController()

@ main{Model): String

@ chat(HttpServietRequest, HitpSession, Model): String

@ startChat(HttpServietRequest, HitpSes sion, Model) :String
@ executeGA(Model):String

@ createMip{Map<String, String[l=): MultiLayerPerceptron
= updatet ion(t ion, Map<String, String=):HttpSession

-neuralietw orkService | 0..1

& ExecuteGA()
@ evolvePopulation(List<int[]=): List<int[]=

_homeController | @ createPopulation(): List<int[}>
%Y B tournamentSelection(List<int[]=) intf]
crossover(int]],int[]) :int
-executeGA | (ine nt{) int]

0.1

B mutate(List=int]]=): List<int]]>

@ gethttest(List<int[]=):int]]

@ getFitness(int]]):double

@ getindividualResults Map(int[]): Map<String, String>
@ getParameterMap(int,int,int): Map<String, String[l>
Osgemllucntinnl:acmr[l'im

@ randint(int,int);int

-neuralNetw orkService g1

<<Java Class>>
(@ NeuralNetworkService

com.ioannisgk.nipwebproject. services

OCNeuraINemmkService[)

-] MultiLay er Percep ():MultiLayerPercepi
@ trainMultiLayer PerceptronMultiLayerPercept

@ testNeuralMNetw ork(NeuralMetw ork, DataSet): Map<String, String=
@ testNeuralMetw ork(NeuralMetw ork, String) :Map=String, String>

,DataSet): MultiLayerPerceptron

@ petMode(): String
-datasetDAC (0.1

<<Java Class>> @ getLayerlSize():int

@ getAllSentencesList():List<String[]>

@ getAllTestSentencesList():List<String[]>

@ getAlResultsList() List<String=>

@ getAlResponsesMap():Map<String, String[[>

@ getlLayer3Size():int

@ getlerations():int

= getindexOf Max (double]]) :int

@ setMode(String) void

(9 DatasetDAO @ setLayer1Size(int):void
com joannisgk_nipwebproject repositories @ getLayer2Size():int
OCDEIESEIDAO[) @ setlLayer2Size(int):void

@ setLayer3Size(int):void

@ setlterations (int):void

Fig. 5. Travel Assistant Chatbot class diagram.

The NeuralNetwork service creates an MLP network, trains it
and tests the test dataset. The ExecuteGA class uses a GA to
find the optimal settings for training the MLP, like the number
of hidden layers, the number of neurons for each layer and
the number of iterations. The ProcessResponse class executes
the business logic and creates the response, and the Stemmer
class in Utils package is used to perform linguistic stemming
on input sentences (Fig. 5). Fully commented source code can
be found in Appendix section A.

C. Implementation

One very important implementation requirement is recog-
nizing the words from the user input and the POS and NER
tagging tasks for each word. For this purpose we used Stanford
CoreNLP (Manning et al., 2014), an integrated suite of NLP
tools for Java that includes all standard tasks and has been
used numerous times in NLP applications (Cabrio et al., 2012;
Chen and He, 2013). In the HomeController class we create
a Sentence object, and with the methods of CoreNLP library®
words, posTags and nerTags, we save the words with NER
tags related to person, location, date, duration and budget, into

Shttps://github.com/stanfordnlp/corenlp

HTTP session variables for later use in the ProcessResponse
class.

The NN will be trained and used for classifying the text
data. We used Neuroph (Sevarac, 2018), a lightweight Java
framework for developing standard types of NN architectures
(Dogaru and Dogaru, 2013; Valkov and Zdravkova, 2016). The
class NeuralNetworkService uses the createMultiLayerPercep-
tron method to create an MLP, based on the class attributes
that configure the number of hidden layers and the number
of neurons per layer. We set the Sigmoid’ as the activation
function of each neuron in order to produce an output between
0 and 1. We also set the Back Propagation as the learning rule
for the MLP to calculate the gradient, estimate the error and
reduce it. The testNeuralNetwork overloaded methods are used
on a test dataset and on the user message, to assign them to a
suitable category. The HomeController class creates the MLP,
trains it and saves it as a file for later use, by calling methods
from the service and from the Neuroph library®. The controller
handles the user choices, saves them in the HTTP session and
uses them to set the attributes on the NeuralNetworkService
class, so the MLP is configured according to the user settings.

7A Sigmoid function is a mathematical function having a characteristic S-
shaped curve or sigmoid curve.
8https://github.com/neuroph/neuroph

APRIL 2018

Our conversation dataset with travel related dialogues comes
from ESL Fast website’, which contains many written and
recorded conversations as a learning resource, and we found
that it fits greatly to the objectives of the Travel Assistant
Chatbot. Our dataset consists of 150 sentences assigned to 10
travel themed categories, and we divided them into the training
set (67%) and the test set (33%).

The createDatasetCorpus method in the DatasetService
class gets all the sentences of our initial dataset, removes
duplicates and performs stemming in order to create the bag-
of-words, a simplified representation model. This is the corpus
for our MLP and in order to create the input arrays, we do the
following: (1) we remove duplicates and perform stemming
on each sentence, (2) we now have a bag-of-words for that
sentence, and we check if each word exists in the corpus bag-
of-words, (3) if a word exists, the specific index of the word
in the input array of the sentence gets the value of 1, if it does
not exist, it gets the value of 0. Each input in the MLP is a
binary array with a length equal to the number of the words
in the corpus. The number of output neurons are 10, as the
sum of the categories, and they get a value between O and
1. The neuron with the higher value points to the assigned
category for the current input sentence. Other functionalities
of the DatasetService class include the creation of the training
set and test set binary arrays.

The ExecuteGA class is responsible for finding the optimal
settings for the MLP. The GA generates random settings,
executes the MLP and tests it with the test set. The fitness
of each set of settings is calculated as the percentage of the
correct predictions against the test set. The set of settings is
encoded into a series of 0 and 1. The first 2 characters are the
binary equivalents of the number of hidden layers, the next
4 characters represent the number of neurons of each layer
and the final 4 characters represent the number of iterations.
First, the population is initialized with individuals that contain
the encoded 10 character string, with random values of 0
and 1. For each generation, we calculate the fitness of each
individual and we apply elitism to keep the best individual.
Then, we select parents with the tournament selection method
and apply the crossover genetic operation to create children.
Mutation comes to add the needed randomness, in order to
explore the solution space and find better solutions. After 10
generations, the population evolves and the fittest individual
is decoded and gives us the best set of settings for our MLP.
We executed the GA for 10 generations and it produced the
following optimal settings: Layers: 1, Neurons: 120, Iterations:
96, with an estimated fitness of 74.0% as seen in Fig. 6.

Finally, the gerResponse method of the ProcessResponse
class checks if some information is missing and a question is
formed. If all slots are filled and the input message is assigned
to a specific category (business logic), the Travel Assistant
Chatbot presents the booking details to the user.

D. Testing

We performed black box, white box and experience based
testing to evaluate Travel Assistant Chatbot. Our main target

9https://www.eslfast.com/robot/topics/travel/travel01.htm

Home Page

Settings

Untrained Neural Network =

‘ Chat Now ‘

‘ Execute GA ‘

GA optimization results: Layers: 1, Neurons:
120, lterations: 96, Fitness: 74.0%

Note: Loading the chat page might take 10 seconds due to Network training.

Fig. 6. Optimal settings for training the MLP, after executing the GA: 1
hidden layer with 120 neurons and 96 iterations have a 74% chance of making
correct predictions on the test set.

was functional testing and we focused on creating test cases
specifically designed for NLP tagging, text classification, GA
and MLP functionality, and response processing. Test cases
were designed to exercise 100% decision coverage and we also
performed exploratory testing in order to find hidden weak-
nesses. Our test cases revealed that the system performed very
well if the GA was executed with the following parameters:
at least 5 generations, a population of 8§ individuals, a mutate
rate of 0.2 and elitism set to true.

We created, trained and tested the MLP with the optimal
settings generated by the GA, but we also tried different
number of neurons and iterations for 1, 2 and 3 hidden
layers. An untrained MLP gave the worst percentage in correct
predictions which was expected, and generally more layers
and number of neurons caused an increase in that ratio, but
that was not always the case. There were times that a specific
combination in MLP settings produced better results. Our tests
confirmed that the highest percentage in correct predictions
was 74% when applying the settings generated by the GA.

NLP tagging with the Stanford CoreNLP suite performance
was excellent and the system successfully recognized all NER
tags related to person, location, date, duration and budget. Fig.
7 shows the questions generated and the messages flow. The
user says that he wants to travel to ”Sydney, on the Ist of
June”. The system classifies that sentence in the “Buying a
Plane Ticket” category and answers with a message assigned
on that category “Would you rather fly in the morning or later
in the day?”. This means that the system has recognized some
of the required NER tags but some slots are still missing, like
the duration and budget, so it adds the appropriate questions
"How long will you be staying? How much money is in

APRIL 2018

Travel Assistant Chatbot

Chat Page

Chat Area

Bot: Welcome, how can | help you?

User: Hello, | am loannis, | would like to travel to Sydney, in the 1st of June.
Bot: Would you rather fly in the morning or later in the day? How long will
you be staying? How much money is in your budget for this trip?

User: | will be staying for 5 nights. Where can | rent a car?

Bot: It depends on what you are looking for. If you are looking to travel
inexpensively, a bus might be your best bet. How much money is in your
budget for this trip?

User: 5000 dollars, but where should we go sightseeing?

Bot: The local amusement park is supposed to be wonderful.

User: That looks great.

Bot: | have you booked on a flight. Your tickets will arrive in the mail within 3
days. Your details are: Name: loannis, Location: Sydney, Date: the 1st of
June, Duration: 5 nights, Budget: 5000 dollars.

Fig. 7. Travel Assistant Chatbot in action, showing the questions generated
and the messages flow. On the right side we can see the overall probability
and the correct predictions made on the test set, the assigned category of the
current user message and the probability of the current assigned category, as
well as the POS and NER tags.

your budget for this trip?”’. The user enters the duration, the
budget is still missing and the system asks about the budget
again. Now, the answer from the user is 5000 dollars, but
where should we go sightseeing?” which is assigned to the
”Sightseeing” category. All slots have been filled, but because
of the business logic, the booking details are not presented
yet, and a sightseeing related message is displayed. The last
message of the user is assigned to ”General Travel Support”
and now the system can present the booking information
recognized during the conversation by the NER tagging task.

Exploratory testing showed that input sentences that were
quite similar with the training dataset showed a correct pre-
diction rate of about 60% - 75%. The input of the user is
natural language, which itself is a vast search space and text
classification can not be thoroughly tested. Whatever method
we use, we will not be able to test all possible inputs. The
GA has produced good results that indeed optimized the MLP
and the text classification procedure, but there is a lot of
room for experimenting with different parameters and settings.
Acceptance tests by a large amount of beta testers would give
a more objective overall evaluation, since the success of the
Chatbot depends heavily on the classification results.

Chat Information

Info Panel

Overall Probability in test dataset: 54.4311509986759 %
Correct Predictions in test dataset: 74.0 %

Assigned Category: General Travel Support
Probability: 14.478242730200827 %

Word POS NER
That DT o]
looks VBZ o]
great JJ]

o]

IV. CONCLUSIONS

NLP applications are increasing every day, making easier
for various platforms to process written and spoken natural
language. Artificial Intelligence has evolved and now NLP
converges with known techniques used in Machine Learning
and Evolutionary Algorithms. In this paper we examined how
NN can be used to train an NLP system for classification
purposes and how a GA can be used to generate the optimal
settings to train the NN. GAs can also optimize NN in different
ways, by generating new sets of feature selections or by
optimizing the connection weights between neurons.

From a theoretical perspective, we saw that NN give great
results when properly configured and trained. They enhance
the performance of various NLP systems, related to question
answering, summarization, dialogue and conversational agents,
and machine translation. Deep learning models can solve
multiple language tasks, while supervised learning is the most
popular practice in recent NLP research (Young et al., 2017).

We analyzed, designed, implemented and tested a Travel
Assistant Chatbot web application, where the system recog-
nizes user input based on its semantic content and assigns
it to specific categories. The system also recognizes words
that provide the required information for slot filling, asks for
missing information, and answers with predefined sentences.
For the development of the application we used Stanford
CoreNLP library for POS and NER tagging, and implemented
an MLP by utilizing the Neuroph library. We developed a GA
algorithm to provide us the optimal settings for training the

APRIL 2018

MLP, such as the number of hidden layers, the number of
neurons per layer and the number of iterations.

From a practical perspective, implementing an MLP opti-
mized with a GA, gave us the best results on text classification
of the user input. Despite the fact that we used a relatively
small dataset of 150 sentences and 10 categories for training
and testing the MLP, the system performed well when the
user input sentences were similar to the training set. A correct
prediction rate of about 60% - 75%, is impressive for such
a small dataset and just 10 generations of the GA. Fully
commented source code can be found on Appendix and on the
following link on GitHub: https://github.com/ioannisgk/nlp-
webproject.

Although the results seem quite promising, we need to note
some important weaknesses of our approach. Firstly, a GA
procedure requires the training and testing of a NN many times
in each stage of the evolution of the populations. This means
that we need extended computational resources and time for
the GA execution to complete. In our tests, we needed more
than 4 hours of processing in a desktop computer with the
latest I7 CPU and 16GB of DDR4 RAM, for 10 generations
to be evolved, in order for the best individual to get selected
and decoded. This time would be reduced if we had a fast
server, but we also had to test the MLP and the GA with
different parameters and settings and this brings us to the
second weakness, which is time for experimentation to find the
best settings. Furthermore, testing an NLP application requires
results from a lot of users to get a more objective overall
evaluation, as the natural language as input, is enormous in
terms of a search space.

Concluding, techniques based on NN and GAs can certainly
improve NLP applications through optimized NN configuration
and deep learning. Indeed, NLP and Machine Learning have
already produced great results, like Sophia, and with the
rapid technological advances in CPU and GPU processors,
the computational costs are reducing, allowing more time
for experimentation. Companies can now train NN faster and
easier with open source platforms like TensorFlow, and create
more effective and human-like chatbots and personal assistants.

REFERENCES

Cambria, E. and White, B. (2014). Jumping NLP Curves: A Review
of Natural Language Processing Research [Review Article]. IEEE
Computational Intelligence Magazine, 9(2), pp.48-57.

Xing, F., Cambria, E. and Welsch, R. (2017). Natural language
based financial forecasting: a survey. Artificial Intelligence Review.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K. and Kuksa, P. (2011). Natural Language Processing (Almost) from
Scratch. The Journal of Machine Learning Research, 12(1532-4435),
pp-2493-2537.

Higginbotham, D., Lesher, G., Moulton, B. and Roark, B. (2012).
The Application of Natural Language Processing to Augmentative and

Alternative Communication. Assistive Technology, 24(1), pp.14-24.

Jurafsky, D. (2007). Speech and language processing. 2nd ed.
New York: Prentice Hall.

Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for

Machine Learning. O’Reilly.

Ritter, A., Clark, S., Etzioni, M. and Etzioni, O. (2011). Named
Entity Recognition in Tweets: An Experimental Study. Proceedings
of the 2011 Conference on Empirical Methods in Natural Language
Processing, pp.15241534.

Goldberg, Y. (2016). A Primer on Neural Network Models for Natural
Language Processing. Journal of Artificial Intelligence Research, 57,
pp.345-420.

Collobert, R. and Weston, J. (2008). A Unified Architecture for
Natural Language Processing: Deep Neural Networks with Multitask
Learning. Proceedings of the 25th international conference on Machine
learning - ICML ’08.

Hassan, A. and Mahmood, A. (2018). Convolutional Recurrent
Deep Learning Model for Sentence Classification. [EEE Access, pp.1-1.

Socher, R. (2014). Recursive Deep Learning for Natural Language
Processing and Computer Vision.

Young, T., Hazarika, D., Poria, S. and Cambria, E. (2017). Recent
Trends in Deep Learning Based Natural Language Processing.
Computing Research Repository. Zaccone, G. (2016). Getting Started
with TensorFlow. Birmingham: Packt Publishing.

Gurney, K. (2014). An Introduction to Neural Networks. Hoboken: CRC
Press.

Mehrotra, K., Mohan, C. and Ranka, S. (1997). Elements of artificial
neural networks. Cambridge, Mass.: MIT Press.

Majewski, M. and Zurada, J. (2008). Sentence recognition using
artificial neural networks. Knowledge-Based Systems, 21(7), pp.629-635.

Akhtar, M., Kumar, A., Ghosal, D., Ekbal, A. and Bhattacharyya,
P. (2017). A Multilayer Perceptron based Ensemble Technique for
Fine-grained Financial Sentiment Analysis. Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing.

Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006). A multilayer
perceptron-based medical decision support system for heart disease
diagnosis. Expert Systems with Applications, 30(2), pp.272-281.

Orhan, U., Hekim, M. and Ozer, M. (2011). EEG signals classification
using the K-means clustering and a multilayer perceptron neural network
model. Expert Systems with Applications, 38(10), pp.13475-13481.

Chattoe-Brown, E. and Edmonds, B. (2017). Evolutionary Mechanisms.
Understanding Complex Systems, pp.525-566.

Sastry, K., Goldberg, D. and Kendall, G. (2013). Genetic Algorithms.
Search Methodologies, pp.93-117.

Meghna, N. and Jyoti, K. (2010). Genetic Algorithms and Evolutionary
Computation. IJCSNS International Journal of Computer Science and
Network Security, 10(12).

Herrera, F., Lozano, M. and Verdegay, J. (1998). Tackling Real-
Coded Genetic Algorithms: Operators and Tools for Behaviour
Analysis. Artificial Intelligence Review, 12(4), pp.265-319.

Diaz, A., Rios, A., Barron, J., Guerrero, T. and Elizondo, J. (2018). An
automatic document classifier system based on genetic algorithm and
taxonomy. /EEE Access, pp.1-1.

Peyrard, M. and Eckle-Kohler, E. (2016). A General Optimization
Framework for Multi-Document Summarization Using Genetic
Algorithms and Swarm Intelligence. Proceedings of COLING 2016, the

APRIL 2018

26th International Conference on Computational Linguistics, pp.247257.

Lempa, P., Ptaszynski, M. and Masui, F. (2016). A Survey on the
Use of Genetic Algorithms in Natural Language Processing. The
Association for Natural Language Processing.

Bungum, L. and Gambck, B. (2010). Evolutionary Algorithms in
Natural Language Processing. Proceedings of the Second Norwegian
Artificial Intelligence Symposium, pp.7-18.

Manurung, R., Ritchie, G. and Thompson, H. (2012). Using genetic
algorithms to create meaningful poetic text. Journal of Experimental
Theoretical Artificial Intelligence, 24(1), pp.43-64.

Mittal, A., Agrawal, A., Chouksey, A., Shriwas, R. and Agrawal,
S. (2016). A Comparative Study of Chatbots and Humans. International
Journal of Advanced Research in Computer and Communication
Engineering, 5(3).

Hirschberg, J. and Manning, C. (2015). Advances in natural language
processing. Science, 349(6245), pp.261-266.

Shah, R., Lahoti, S. and Lavanya, K. (2017). An intelligent chat-
bot using natural language processing. International Journal of
Engineering Research, 6(5), p.281.

Jurafsky, D. and Martin, J. (2017). Speech and Language Processing.
3rd ed. New York: Prentice Hall.

Abdul-Kader, S. and Woods, J. (2015). Survey on Chatbot Design
Techniques in Speech Conversation Systems. International Journal of
Advanced Computer Science and Applications, 6(7).

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. and
McClosky, D. (2014). The Stanford CoreNLP Natural Language
Processing Toolkit. Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations,
pp.55-60.

Sevarac, Z. (2018). Java Neural Network Framework Neuroph. [online]
Neuroph.sourceforge.net. Available at: http://neuroph.sourceforge.net/
[Accessed 19 Mar. 2018].

Valkov, N. and Zdravkova, E. (2016). Implementation of a Neural
Network Using Simulator and Petri Nets. International Journal of
Advanced Computer Science and Applications, 7(1).

Dogaru, 1. and Dogaru, R. (2013). JLCNN: An object-oriented Java
package for low complexity neural networks. 2013 4th International
Symposium on Electrical and Electronics Engineering (ISEEE).

Chen, H. and He, B. (2013). Automated Essay Scoring by Maximizing
Human-machine Agreement. Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pp.17411752.

Cabrio, E., Cojan, J., Aprosio, A., Magnini, B., Lavelli, A. and
Gandon, F. (2012). What’s Cookin’? Interpreting Cooking Videos using
Text, Speech and Vision. Proceedings of the 2012th International
Conference on Posters & Demonstrations Track, 914, pp.9-12.

