
BEST PRACTICES 2019

Table of Contents
1 About

Helm

Codefresh

2 Helm concepts

3 Common Helm misconceptions
Helm repositories are optional

Chart versions and appVersions

Charts and sub-charts

Helm vs K8s templates

5 Helm pipelines
Deploy from an un-packaged chart

Package/push and then deploy

Separate Helm pipelines

Using Helm rollbacks

8 Helm packaging strategies
Simple 1-1 versioning

Chart versus application versioning

Umbrella charts

9 Helm promotion strategies
Single repository with multiple environments

Chart promotion between environments

Chart promotion between repositories and environments

1
 |

 H
E

L
M

B

E
S

T

P
R

A
C

T
IC

E
S

2

0
1

9

About
Helm
Helm is the package manager for Kubernetes clusters. It
allows you to group multiple microservices together (along
with their dependencies) and treat them as a single entity.

Helm packages are called Charts. You can create your
own charts or find existing ones for popular applications at
https://github.com/helm/charts. If you are already familiar
with apt, yum, pacman etc. you will feel right at home with
Helm.

Codefresh
Codefresh is the only Continuous Integration/Delivery
platform designed specifically for microservices and
containers running on Kubernetes.

Codefresh includes comprehensive built-in support for
Helm charts and deployments and even offers a private
free Helm repository with each account. Combined with
the private Docker registry and dedicated Kubernetes
dashboards, Codefresh is an one-stop-shop for
microservice development.

https://helm.sh/
https://github.com/helm/charts
https://codefresh.io

2
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

HELM Best practices
A high-level overview of Helm workflows

Helm is a package manager for Kubernetes (think apt or yum). It works by combining
several manifests into a single package that is called a chart. Helm also supports chart
storage in remote or local Helm repositories that function like package registries such as
maven central, ruby gems, npm registry, etc.

Helm is currently the only solution that supports

• The grouping of related Kubernetes manifests in a single entity (the chart)

• Basic templating and value support for Kubernetes manifests

• Dependency declaration between applications (chart of charts)

• A registry of available applications to be deployed (Helm repository)

• A view of a Kubernetes cluster in the application/chart level

• Management of installation/upgrades of charts as a whole

• Built-in rollback of a chart to a previous version without running a CI/CD pipeline again

You can find a list of public curated charts in the default Helm repository.

Several third party tools support Helm chart creation such as Draft. Local Helm
development is also supported by garden.io and/or skaffold. Check your favorite tool for
native Helm support.

Codefresh also has built-in support for Helm packages, deployments, repositories, and
environments.

Helm concepts
The official docs do a good job of explaining the basic concepts. Some important points
are shown in the table below:

Helm Concept Description Important point

Chart (unpackaged) A folder with files that follow the
Helm chart guidelines.

Can be deployed directly to a
cluster

Chart (packaged) A tar.gz archive of the above Can be deployed directly to a
cluster

Chart name Name of the package as defined in
Chart.yaml Part of package identification

Templates A set of Kubernetes manifests that
form an application Go templates can be used

Values Settings that can be parameterized
in Kubernetes manifests Used for templating of manifests

Chart version The version of the package/chart Part of package identification

https://helm.sh/
https://helm.sh/docs/developing_charts/
https://github.com/helm/charts/tree/master/stable
https://docs.garden.io/using-garden/using-helm-charts
https://skaffold.dev/docs/how-tos/deployers/#deploying-with-helm
https://codefresh.io/docs/docs/new-helm/helm-releases-management/
https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/
https://codefresh.io/docs/docs/new-helm/managed-helm-repository/
https://codefresh.io/docs/docs/new-helm/helm-environment-promotion/
https://helm.sh/docs/using_helm/

3
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Common Helm misconceptions
Any new technology requires training on how to use it effectively. If you have already
worked with any type of package manager you should be familiar with how Helm works.

Here is a list of important Helm points that are often controversial between teams.

Helm repositories are optional
Using Helm repositories is a recommended practice, but completely optional. You can
deploy a Helm chart to a Kubernetes cluster directly from the filesystem. The quick start
guide actually shows this scenario.

Helm can install a chart either in the package (.tgz) or unpackaged form (tree of files) to a
Kubernetes cluster right away. Thus the most minimal Helm pipeline has only two steps:

1. Checkout from git a Helm chart described in uncompressed files

2. Install this chart to a Kubernetes cluster

Helm Concept Description Important point

App version The version of the application
contained in the chart Independent from chart version

Release A deployed package in a
Kubernetes cluster

Multiple releases of the same chart
can be active

Release name An arbitrary name given to the
release Independent from name of chart

Release Revision
A number that gets incremented
each time an application is
deployed/upgraded

Unrelated to chart version

Repository A file structure (HTTP server) with
packages and an index.yaml file

Helm charts can be deployed
without being fetched from a
repository first

Installing
Creating a brand new release from
a Helm chart (either unpackaged,
packaged or from a repo)

Upgrading Changing an existing release in a
cluster

Can be upgraded to any version
(even the same)

Rolling back Going back to a previous revision
of a release

Helm handles the rollback, no need
to re-rerun pipeline

Pushing Storing a Helm package on a
repository

Chart will be automatically
packaged

Fetching

Simplest Helm pipeline

https://codefresh.io/docs/docs/getting-started/helm-quick-start-guide/
https://codefresh.io/docs/docs/getting-started/helm-quick-start-guide/

4
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

You will see in the next section more efficient workflows, but the fact remains that Helm
repositories are optional. There is no technical requirement that a Helm chart must be
uploaded to a Helm repository before being deployed to a cluster.

Chart versions and appVersions
Each Helm chart has the ability to define two separate versions:

1. The version of the chart itself (version field in Chart.yaml)

2. The version of the application contained in the chart (appVersion field in Chart.yaml)

These are unrelated and can be bumped up in any manner that you see fit. You can sync
them together, or have them increase independently. There is no right or wrong practice
here as long as you stick into one. We will see some versioning strategies in the next
section.

Charts and sub-charts
The most basic way to use Helm is by having a single chart that holds a single application.
The single chart will contain all the resources needed by your application such as
deployments, services, config-maps etc.

However, you can also create a chart with dependencies to other charts (a.k.a. umbrella
chart) which are completely external using the requirements.yaml file. Using this strategy is
optional and can work well in several organizations. Again, there is no definitive answer on
right and wrong here, it depends on your team process.

We will see some scenarios in the
next sections on why you would
want to use umbrella charts.

Helm vs K8s templates
Helm is a package manager that also happens to include templating capabilities.
Unfortunately, a lot of people focus only on the usage of Helm as a template manager and
nothing else.

Technically Helm can be used as only a templating engine by stopping the deployment

Possible Helm structures

5
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

process in the manifest level. It is perfectly possible to use Helm only to create plain
Kubernetes manifests and then install them on the cluster using the standard methods
(such as kubectl). But then you miss all the advantages of Helm (especially the application
registry aspect).

At the time of writing Helm is the only package manager for Kubernetes, so if you want a
way to group your manifests and a registry of your running applications, there are no off-
the-shelf alternative apart from Helm.

Here is a table that highlights the comparison:

Helm pipelines
With the basics out of the way, we can now see some typical Helm usage patterns.
Depending on the size of your company and your level of involvement with Helm you need
to decide which practice is best for you.

Deploy from an un-packaged chart
This is the most simple pipeline for Helm. The Helm chart is in the same git repository as
the source code of the application.

The steps are the following:

1. Code/Dockerfile/Chart is checked out from Git

2. Docker image is built (and pushed to internal Codefresh registry)

3. Chart is deployed directly to a Kubernetes Cluster

Helm Feature Alternative

Templating Kustomize, k8comp, kdeploy, ktmpl, kuku, jinja, sed, awk, etc.

Manifest grouping (entity/package) None

Application/package dependencies None

Runtime view of cluster packages None

Registry of applications None

Direct rollbacks and Upgrades None

Using Helm without
a Helm repository

https://helm.sh/docs/helm/#helm-template
https://helm.sh/docs/helm/#helm-template
https://codefresh.io/docs/docs/docker-registries/codefresh-registry/
https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/#example-installing-a-chart

6
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Notice that in this pipeline there is no Helm repository involved.

We recommend this workflow only while you are learning Helm. Storing your Helm charts
in a Helm repository is a better practice as described in the next section.

Package/push and then deploy
This is the recommended approach when using Helm. First, you package and push the
Helm chart in a repository and then you deploy it to your cluster. This way your Helm
repository shows a registry of the applications that run on your cluster. You can also re-use
the charts to deploy to other environments (described later in this page).

The Helm chart can be either in the same GIT repository as the source code (as shown
above) or in a different one. Note that this workflow assumes that you have attached a
Helm repository configuration in the pipeline.

If you use the Codefresh
Helm repository you can
see all your releases
from the Codefresh UI.

This approach allows you also to reuse Helm charts. After you publish a Helm chart, in the
Helm repository you can deploy it to another environment (with a pipeline or manually)
using different values.

Basic Helm application pipeline

Helm application catalog

https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/#step-4---import-the-helm-configuration-in-your-pipeline-definition
https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/#step-4---import-the-helm-configuration-in-your-pipeline-definition
https://codefresh.io/docs/docs/new-helm/managed-helm-repository/
https://codefresh.io/docs/docs/new-helm/managed-helm-repository/

7
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Separate Helm pipelines
Even though packaging and deploying a release in a single pipeline is the recommended
approach, several companies have two different processes for packaging and releasing.

In this case, you can create two pipelines. One that packages the Helm chart and uploads it
to a Helm repository and another one that deploys to a cluster from the Helm chart.

While this approach offers
flexible releases (as one can
choose exactly what is
released and what is not), it
also raises the complexity of
deployments. You need to
pass parameters on the
deployment pipeline to
decide which chart version
will be deployed.

In Codefresh you can also have the two pipelines automatically linked together.

Using Helm rollbacks
Helm has the native capability of rolling back a release to any previous revision. This can
be done manually or via the Codefresh UI.

A more advanced usage would be to automatically rollback a release if it “fails”.

In the example pipeline above, after deployment, we run some smoke tests/health checks.
If they fail, then the rollback step is executed using pipeline conditionals.

Alternatively, you can run any other freestyle step after a deployment such as health
checks, metric collection, load testing, etc that decides if a deployment if a Helm rollback is
needed or not.

Integrating automatic Helm rollbacks can be used in all kinds of Helm workflows that were
described in this section.

Push and deploy in different pipelines

Automatic Helm rollback

https://codefresh.io/docs/docs/integrations/codefresh-api/#using-codefresh-from-within-codefresh
https://helm.sh/docs/helm/#helm-rollback
https://codefresh.io/docs/docs/new-helm/helm-releases-management/#helm-releases-overview
https://codefresh.io/docs/docs/codefresh-yaml/conditional-execution-of-steps/
https://codefresh.io/docs/docs/codefresh-yaml/steps/freestyle/

8
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Helm packaging strategies
As mentioned before a Helm chart version is completely different than the application
version it contains. This means that you can track versions on the Helm chart itself
separately from the applications it defines.

Simple 1-1 versioning
This is the most basic versioning approach and it is the suggested one if you are starting
out with Helm. Don’t use the appVersion field at all (it is optional anyway) and just keep the
chart version in sync with your actual application.

This approach makes version bumping
very easy (you bump everything up) and
also allows you to quickly track what
application version is deployed on your
cluster (same as chart version).

The downside of this approach is that you
can’t track chart changes separately.

Chart versus application versioning
This is an advanced approach which you should adopt if changes are happening in the
charts themselves all the time (i.e. in the templates) and you want to track them separately
from the application.

Independent Helm versioning
An important point here is that you need to adopt a policy in your team on what a “chart
change” means. Helm does not enforce chart version changes. You can deploy a different
chart with the same version as the previous one. So if this is something that you want to do,

Synced versions in Helm

Independent Helm versioning

9
 |

H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

you need to make sure that all teams are on the same page for versioning practices.

On the plus side, this workflow allows you to individually version charts and applications
and is very flexible for companies with teams that manage separately the charts from the
application source code.

Umbrella charts
Umbrella charts are charts of charts. They add an extra layer of complexity on both
previous approaches. You can follow the same paradigms in umbrella charts. Either the
parent chart has the same version as everything else (first approach) or it has a version on
its own.

In the second case, you need to agree with your team on when exactly the parent chart
version should be bumped. Is it only when a child chart changes? Only when an application
changes? or both?

The answer does not really matter as long as your team follows the same rules.

Helm promotion strategies
A Helm chart (like a Docker image) should be promoted between environments. It should
start with testing and staging environments and gradually move to production ones.

Single repository with multiple environments
This is the most basic deployment workflow. You have a single Helm chart (which is exactly
the same across all environments). It is deployed to multiple targets using a different set of
values.

Codefresh has several ways to override the values for each environment within a pipeline.

Chart promotion between environments
This is the recommended deployment workflow. Codefresh can store different Helm values
per environment in the shared configuration mechanism. Then you view and manage
releases from the Helm environments dashboard.

Deploy to multiple environments with Helm

https://codefresh.io/docs/docs/new-helm/using-helm-in-codefresh-pipeline/#helm-values
https://codefresh.io/docs/docs/configure-ci-cd-pipeline/shared-configuration/#using-shared-helm-values
https://codefresh.io/docs/docs/new-helm/helm-environment-promotion/

10

|
 H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Helm Environment
Dashboard

Then once you promote a Helm release either from the GUI, or the pipeline you can select
exactly which configuration set of parameters you want to use:

This workflow has two big advantages:

1. You get a visual overview on what Helm release is installed where

2. You can promote releases without running the initial CI/CD pipeline (that created the
chart)

Changing deployment values

11

|
 H

E
L

M

B
E

S
T

P

R
A

C
T

IC
E

S

2
0

1
9

Chart promotion between repositories and environments
A more advanced workflow (useful in organizations with multi-location deployments) is the
promotion of Helm releases between both repositories and environments.

There are different pipelines for:

1. Creating the Helm chart and storing it to a staging Helm repository (i.e. the
Codefresh Helm repository)

2. Deployment of the Helm chart to a staging environment. After it is tested the chart is
promoted to one or more “production” Helm repositories

3. Deployment of the promoted Helm chart happens to one of the production
environments

While this workflow is very flexible, it adds complexity on the number of Helm charts
available (since they exist in multiple Helm repositories). You also need to set up the
parameters between the different pipelines so that Helm charts to be deployed can be
indeed found in the expected Helm repository.

Advanced Helm promotion

https://codefresh.io/docs/docs/new-helm/add-helm-repository/

www.codefresh. io

https://codefresh.io/

	About
	Helm
	Codefresh

	Helm concepts
	Common Helm misconceptions
	Helm repositories are optional
	Chart versions and appVersions
	Charts and sub-charts
	Helm vs K8s templates

	Helm pipelines
	Deploy from an un-packaged chart
	Package/push and then deploy
	Separate Helm pipelines
	Using Helm rollbacks

	Helm packaging strategies
	Simple 1-1 versioning
	Chart versus application versioning
	Umbrella charts

	Helm promotion strategies
	Single repository with multiple environments
	Chart promotion between environments
	Chart promotion between repositories and environments

