
Towards Online Electric Vehicle
Scheduling for Mobility-On-Demand

Schemes

Ioannis Gkourtzounis1, Emmanouil S. Rigas2(B), and Nick Bassiliades2

1 Department of Computing, The University of Northampton,
Northampton NN15PH, UK

ioannisgk@live.com
2 Department of Informatics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
{erigas,nbassili}@csd.auth.gr

Abstract. We study a setting where electric vehicles (EVs) can be hired
to drive from pick-up to drop-off stations in a mobility-on-demand (MoD)
scheme. Each point in the MoD scheme is equipped with battery charge
facility to cope with the EVs’ limited range. Customer-agents announce
their trip requests over time, and the goal for the system is to maxi-
mize the number of them that are serviced. In this vein, we propose two
scheduling algorithms for assigning EVs to agents. The first one is effi-
cient for short term reservations, while the second for both short and
long term ones. While evaluating our algorithms in a setting using real
data on MoD locations, we observe that the long term algorithm achieves
on average 2.08% higher customer satisfaction and 2.87% higher vehicle
utilization compared to the short term one for 120 trip requests, but with
17.8% higher execution time. Moreover, we propose a software package
that allows for efficient management of a MoD scheme from the side of
a company, and easy trip requests for customers.

Keywords: Electric vehicles · Mobility on demand · Scheduling ·
Demand response · Software

1 Introduction

In a world where over 60% of the total population will be living in, or around
cities, the current personal transportation model is not viable as it is based
almost entirely on privately owned internal combustion engined vehicles. These
vehicles cause high air and sound pollution, and suffer from low utilization rates
[1]. One of the key elements of the vision of future Smart Cities is the devel-
opment of Mobility-on-Demand (MoD) systems, especially ones using fleets of
Electric Vehicles (EVs) [2]. Such vehicles emit no tailpipe pollutants and, once
powered by electricity produced from renewable sources, they can play an impor-
tant role towards the transition to a new and sustainable transportation era.
c© Springer Nature Switzerland AG 2019
M. Slavkovik (Ed.): EUMAS 2018, LNAI 11450, pp. 94–108, 2019.
https://doi.org/10.1007/978-3-030-14174-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14174-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-14174-5_7

Towards Online Electric Vehicle Scheduling 95

Most of the deployed MoD schemes use normal cars. However, EVs present
new challenges for MoD schemes. For example, EVs have a limited range that
requires them to charge regularly their battery when they stop. Moreover, if
such MoD schemes are to become popular, it will be important to ensure that
charging capacity is managed and scheduled to allow for the maximum number
of consumer requests to be serviced across a large geographical area. In this
context, Pavone et al. have developed mathematical programming-based rebal-
ancing mechanisms for deciding on the relocation of vehicles to restore imbal-
ances across a MoD network, either using robotic autonomous driving vehicles
[3], or human drivers [4], while Smith et al. [5] use mathematical programming
to optimally route such rebalancing drivers. Moreover, Carpenter et al. [6] pro-
pose solutions for the optimal sizing of shared vehicle pools. However, in all
these works internal combustion engine-based vehicles are assumed and hence
do not account for the limited range of EVs and how to balance the number of
pending requests at specific nodes across the network while serving the maxi-
mum number of users. In contrast, [7] consider on-demand car rental systems for
public transportation. To address the unbalanced demand across stations and
maximise the operator’s revenue, they adjust the prices between origin and desti-
nation stations depending on their current occupancy, probabilistic information
about the customers’ valuations and estimated relocation costs. Using real data
from an existing on-demand mobility system in a French city, they show that
their mechanisms achieve an up to 64% increase in revenue for the operator and
at the same time up to 36% fewer relocations. In addition, Rigas et al. [8] use
mathematical programming techniques and heuristic algorithms to schedule EVs
in a MoD scheme taking into consideration the limited range of EVs and the
need to charge their batteries. They goal of the system is to maximize serviced
customers.

In this paper, we step upon the work of Rigas et al. [8], and we solve the prob-
lem of assigning EVs to customers online. In so doing, we propose two scheduling
algorithms for the EV-to-customer assignment problem aiming to maximize the
number of serviced customers. The first one is shown to be efficient for short term
bookings, while the second for both short and long term ones. Both algorithms
are evaluated in a setting using real data regarding MoD locations in Bristol, UK.
Moreover, we propose a software package which consists of a web platform that
supports the efficient monitoring and management of a MoD scheme from the
side of a company, and a mobile application for easy trip requests for customers.

The rest of the paper is organized as follows: Sect. 2 presents a mathematical
formulation of the problem, while Sect. 3 describes the scheduling algorithms.
Section 4 presents the software package for the management of the MoD scheme
and Sect. 5 contains the evaluation. Finally, Sect. 6 concludes and presents ideas
for future work.

2 Problem Formulation

We study a MoD setting where customer-agents k ∈ K, announce their intentions
to drive between pairs of locations over time. Each time a new request is received

96 I. Gkourtzounis et al.

by the MoD company (we assume a single MoD company to exist), it applies an
algorithm that schedules an available EV, if such an EV exists, to drive across
the set of requested locations. In assigning EVs to trips, the MoD company aims
to maximize the number of agents that will be serviced. We assume that EVs
have a limited driving range which requires them to have their battery charged
at the stops that form part of the MoD scheme.

In more detail, we denote a set of EVs a ∈ A and a set of locations l ∈ L which
are pick-up and drop-off stations, where each l ∈ L has a maximum capacity
cl ∈ N . We consider a set of discrete time points T ⊂ R, t ∈ T , where time is
global for the system and the same for all EVs. Moreover, we have a set of tasks
i ∈ Δ where each task is denoted by a tuple pi = < lstarti , lendi , tstarti , τi, bi >.
lstarti and lendi are the start and end locations of the task, ti is the starting
time point of the task, while τi is its travel time (each task has also an end
time tendi = tstarti + τi), and bi is the energy cost of the task. Each agent has
a valuation vk(i) = 1 for executing the requested task i and vk(i′) = 0 for any
other task i′ �= i. Note that a task is a trip taking place at a particular point
in time. Also, note that one-way rental is assumed, and therefore, start and end
locations of a task are always different. Moreover, we assume that customers
drive the cars between start and end locations without stopping or parking
them during the trip. One-way rental introduces significant flexibility for users,
but management complexities (e.g., complex decision making in choosing which
customers to service, and high importance of the initial location of EVs) [9].
Henceforth, index a stands for EVs, l for locations, t for time points and i for
tasks.

Each EV a has a current location at time point t, denoted as la,t, and this
location changes only each time a executes one task. Here, we assume that at
time point t = 0 all EVs are at their initial locations linitiala,t=0 ∈ L, and that their
operation starts at time point t ≥ 1. Moreover, each a has a current battery level
ba,t ∈ N , a consumption rate cona and therefore, a current driving range in terms
of time τa,t = [ba,t/cona] ∈ N . Now, for a task i to be accomplished, at least
one EV a must be at location lstarti at time point ti, having enough energy to
execute the task (i.e., ba,t > bi). We also define binary variable prkt,a,l ∈ {0, 1}
to capture the location where each EV is parked at each time point, binary
variable εa,i,t ∈ {0, 1} denoting whether EV a is executing task i at time t, and
binary variable δi ∈ {0, 1} denoting whether task i is executed or not. At any t,
each EV should either be parked at exactly one location, or travelling between
exactly one pair of locations. In the next section we present the decision making
algorithms.

3 Scheduling Algorithms

In this section, we study the scheduling of EVs to customers, based on their
requests and EV availability across the set of stations. In this vein we develop
two decision making algorithms, one for short-term bookings and another for
long-term ones.

Towards Online Electric Vehicle Scheduling 97

3.1 Short Mode Algorithm

The Short mode algorithm (see Algorithm 1) receives as input trip requests from
agents to drive an EV between stations lstarti and lendi starting at time point
tstarti (tcur defines the current time point). Based on these data, the algorithm
calculates the duration τi of the task and the energy demand bi (line 1). In this
way the tuple pi that describes a task i is completed. Next, the vehicles that are
currently at the start station or are travelling to it and will arrive in t < tstarti

(i.e., ∀a : prktstart
i −1,a,lstart

i
= 1) are added to the set candidateEV ⊆ A (lines

2–4). If candidateEV = ∅, then task i cannot be executed. Otherwise, we check
if the candidate vehicles have future routes and we add the vehicles without
future routes, to set betterCandidateEV ⊆ candidateEV (lines 5–10).

Algorithm 1. EVs Scheduling Algorithm - Short mode.
Require: i and A and L and T and tcur and ∀a, ba,tcur and ∀a, t, l εa,t,l and ∀a, t, l

and prka,t,l

1: Calculate bi and τi

2: for ∀a ∈ A do
3: if prktstart

i −1,a,lstart
i

= 1 then
4: Assign a to candidateEV
5: if candidateEV = ∅ then
6: δi = 0
7: else
8: for ∀a ∈ candidateEV do
9: if ∀i, t > tstart

i + τi, εa,i,t = 0 then
10: Assign a to betterCandidateEV
11: if betterCandidateEV �= ∅ then
12: for ∀a ∈ betterCandidateEV do
13: Calculate battery charge ba,tstart

i −1

14: if ba,tstart
i −1 − bi > 0 then

15: Assign a to bestCandidateEV
16: Sort bestCandidateEV based on remaining energy after executing task i
17: Assign first vehicle a to task i and set δi = 1
18: else
19: δi = 0

return δi, ε, prk

If betterCandidateEV = ∅, then the task is not executed. Otherwise, we
calculate and set the future charge (we use the term “charge” for “the current
state of charge level”) for each vehicle by subtracting the energy cost of the task
bi from the charge level of each vehicle, ba,tstart

i −1. We sort the vehicles by future
charge in descending order and if the future charge of a vehicle is greater than
zero, we add it to set bestCandidateEV ⊆ betterCandidateEV . We assume
that for ∀a, t, l : prka,t,l = 1 a is charging its battery, unless it is fully charged.
Now, the bestCandidateEV contains all the vehicles that are suitable to execute
task i. The first vehicle in the list has the maximum charge level, so it is the

98 I. Gkourtzounis et al.

best candidate vehicle. Thus, we assign it to task i (i.e., ∀t : t >= tstarti andt <
tstarti + τi, εa,i,t = 1 and δi = 1). If bestCandidateEV = ∅, the task is not
executed (lines 11–19).

In summary, the Short mode algorithm gets the vehicles that currently are,
or finish in the start station before start time of the task and adds the vehicles
without future routes to a list. We calculate the charge cost for the request trip,
get the vehicles with enough charge and assign the best vehicle to the new route.1

The Short mode algorithm has a relatively simple implementation, but its
biggest drawback is that if a vehicle is assigned for a route that starts for example,
after 6 h, this vehicle can not be used for another route for this period of time.
One way to tackle this problem is to restrict the minutes in the future, that users
are allowed to request a trip.

3.2 Long Mode Algorithm

A restriction that does not allow users to request vehicles at any time during
the day, may not be a viable solution. In order to overcome this problem, we
developed and implemented the Long mode algorithm that applies a one-step
look ahead technique to reschedule EVs to other tasks in order to increase vehicle
utilization and customer satisfaction.

The Long mode algorithm (see Algorithm 2) receives trip requests and the
candidateEV set is populated in the same way as in the short mode algorithm
(lines 1–4). Next, we get the vehicles without future routes and the vehicles with
one future route and add them to betterCandidateEV ⊆ candidateEV and
betterCandidateEV WithLateRoutes ⊆ candidateEV respectively (lines 5–12).
We calculate the future charge bi,tstart

i
of the EVs in the same way as described

in the previous section and sort them by future charge in descending order. We
subtract the task’s energy cost bi from bi,tstart

i
and if the value is greater than

zero, we add it to the bestCandidateEV . Now, the bestCandidateEV contains
all the vehicles that are suitable for the requested trip. The first vehicle in the list
has the maximum charge level, so it is the best candidate vehicle. Thus, we assign
this vehicle to execute task i. If there are no vehicles in the bestCandidateEV ,
the first part of the algorithm which is actually the same to the short mode one,
ends (lines 13–19).

At this point, there are no vehicles without future routes and with enough
charge level to execute task i. Thus, we need to find a candidate vehicle a′ with
a future task i′, assign this task to a substitute vehicle a and then assign the
vehicle a′ to task i (i.e., a −→ i′, a′ −→ i). First, we check the task of the vehicles
in the betterCandidateEV WithLateRoutes. If this task starts later than the
start time plus the trip duration of the user request, we need to find a substitute
vehicle. We add the vehicles that are currently in the start station and the
vehicles that finish at the start station before the start time of task i′, to the
substituteEV ⊆ betterCandidateEV WithLateRoutes. Note that tstarti′ > tstarti

and for this reason candidateEV ⊆ substituteEV (lines 20–25).

1 A flowchart for the Short mode is available at https://goo.gl/dxpfer.

https://goo.gl/dxpfer

Towards Online Electric Vehicle Scheduling 99

Algorithm 2. EVs Scheduling Algorithm - Long mode.
Require: i and A and L and T and tcur and ∀a, ba,tcur and ∀a, t, l εa,t,l and ∀a, t, l

and prka,t,l

1: Calculate bi and τi

2: for ∀a ∈ A do
3: if prktstart

i −1,a,lstart
i

= 1 then
4: Assign a to candidateEV
5: if candidateEV = ∅ then
6: δi = 0
7: else
8: for ∀a ∈ candidateEV do
9: if ∀i, t > tstart

i + τi, εa,i,t = 0 then
10: Assign a to betterCandidateEV
11: else if ∀i,

∑
t:t>tstart

i +τi
(|εa,i,t − εa,i,t−1| = 2) then

12: Assign a to betterCandidateEV WithLateRoutes
13: if betterCandidateEV �= ∅ then
14: for ∀a ∈ betterCandidateEV do
15: Calculate battery charge ba,tstart

i −1

16: if ba,tstart
i −1 − bi > 0 then

17: Assign a to bestCandidateEV
18: Sort bestCandidateEV based on remaining energy after executing task i
19: Assign first vehicle a to task i and set δi = 1
20: else
21: for ∀a′ ∈ betterCandidateEV WithLateRoutes do
22: For the task i′, vehicle a′ is assigned to:
23: for ∀a ∈ A do
24: if prktstart

i′ −1,a,lstart
i′

= 1 then

25: Assign a to substituteEV
26: for ∀a ∈ substituteEV do
27: if ∀i, t > tstart

i′ + τi′ , εa,i,t = 0 then
28: Assign a to substitutesWithoutRoute
29: if substitutesWithoutRoute �= ∅ then
30: for ∀a ∈ substitutesWithoutRoute do
31: Calculate battery charge ba,tstart

i′ −1

32: if ba,tstart
i′ −1 − bi′ > 0 then

33: Assign a to bestCandidatesubstituteEV
34: Sort bestCandidatesubstituteEV based on remaining energy after execut-

ing task i′

35: Assign a to i′ and a′ to i and set δi = 1
36: Break for loop
37: else
38: δi = 0

return δi, ε, prk

We add the substitute EVs without future routes to the substitutes
WithoutRoute ⊆ substituteEV and we sort them by future charge in
descending order. If the substitute vehicle of the best candidate vehicle

100 I. Gkourtzounis et al.

has enough charge for the future trip of the candidate vehicle, we assign
the substitute vehicle to the candidate vehicle’s future route and EV a ∈
betterCandidateEV WithLateRoutes is assigned to task i and δi = 1 (lines
26–38).

In summary the Long mode algorithm gets the vehicles in the start station
without future routes and those with one future route and adds them to lists. If
there are vehicles with enough charge in the first list, we assign the best vehicle to
the new route, else we search for a substitute vehicle to replace the future route
of a vehicle in the second list. We get substitute vehicles without future routes
and with enough charge, and we assign the best substitute to the future route
of the best vehicle in the second list. Now, the best vehicle in the second list is
no longer “locked/assigned” and we assign it to the new route.2 The differences
between the two algorithms are summarized in Fig. 1.

In the next section, we present a software package that integrates the pre-
viously described algorithms and provides an efficient user interface for MoD
companies to manage their fleet, and customers to request trips.

Fig. 1. Comparing Short mode and Long mode algorithms functionalities.

4 MOD Software Package

Apart from the scheduling algorithms, we designed and developed a fully func-
tional software package (see Fig. 2), for a MoD company to monitor the state
and locations of their EVs, and for the customers to make trip requests and
bookings.3

2 A flowchart for the Long mode is available at https://goo.gl/zFdWvh (part 1) and
https://goo.gl/WZHrRc (part 2).

3 A video demo is available at https://youtu.be/flyixErIE-A.

https://goo.gl/zFdWvh
https://goo.gl/WZHrRc
https://youtu.be/flyixErIE-A

Towards Online Electric Vehicle Scheduling 101

Fig. 2. Web platform and mobile application screenshot.

The web platform is installed on a server and it consists of the web pages
presented to the administrators and a MySQL database to manage all the data.
Administrators interact with the platform using web pages designed for specific
functionalities. Thus, the interface allows them to login, upload a map with
stations, upload vehicles’ details and manage administrator and user accounts,
stations, vehicles and routes. All operations submitted through the interface of
the pages are implemented as transactions in the MySQL database. From the
customer perspective, the mobile application lets users register, login, access
their profile, their request history, select stations and request a vehicle for a trip.
Creating an account and accessing account and station details, require access to
the MySQL database on the server (Fig. 3).

Information exchange with the database is done via a RESTful web service
that authenticates users and allows them to access, create and edit data on the
database. Messages for vehicle requests use WebSockets, so the server listens
to a specific port for incoming TCP messages. Those messages are encrypted
and sent from the mobile device to the server through a TCP connection, mak-
ing the communication safe and reliable. Then, the platform applies one of the
algorithms presented in the previous section to accept or deny the user request.
The status of the request (accepted or denied) will be sent back to the mobile
application as an encrypted message through the TCP connection and the user
can see if his request is accepted by the system.

102 I. Gkourtzounis et al.

Fig. 3. System architecture with web platform, database and mobile app.

4.1 Web Platform

The pages of the web platform4 let the administrators perform the functionalities
related to managing user accounts, stations, vehicles and routes, as discussed
earlier. The login page allows administrators to login with their username and
password. On successful login, they are redirected to the Dashboard Panel. The
Dashboard Panel shows route data and contains buttons to update, delete or
add a new route. The stations are shown as pins on a Google map and buttons
allow administrators to start or stop the service.

The Manage Admins and Manage Users pages show administrator and user
data respectively, and contain buttons to update their existing details, delete
them or add new administrators and users. The Manage Stations and Manage
Vehicles pages offer the same functionalities, but they also allow administrators
to upload stations and vehicle details from files in XML format. For each object
there are two secondary pages, the Add New page and the Update page to
provide secondary functionalities, such as adding and updating objects.

The Graphical User Interface (GUI) of the web platform consists of elements
that are similar and shared between the pages. The navigation options link to
the most important pages: Dashboard, Live Charts, Admins, Users, Stations,
Vehicles, Simulation and Logout.

4 https://github.com/ioannisgk/evsharing-platform3-release.

https://github.com/ioannisgk/evsharing-platform3-release

Towards Online Electric Vehicle Scheduling 103

4.2 Mobile Application

The Android mobile application5 consists of a set of screens: The Main Login
screen allows users to login with their username and password. If they do not
have an account, they can click the Register button to create a new account with
their details. On successful login, they are redirected to My Profile screen. The
Profile screen shows their details and contains buttons to update them and to
move on to the next screens, such as the Open Map and User History.

The Open Map screen initiates the first step for requesting a vehicle and the
map is shown with the stations as pins. Users can select the start and finish
stations and on the second step, on the Request screen they can select a specific
time and send the request to the platform. The platform will process all current
data and decide whether to accept or deny the request. The mobile application
gets the status of the request from the server and saves it to the device. The
User History screen contains the history of requests and the Settings screen
allows users to change the application settings.

The GUI of the mobile application consists of elements that are similar and
shared between the screens. The navigation options link to the most important
screens: My Profile, Open Map, Request Vehicle, User History, Settings and
Logout. The navigation menu is hidden when the user touches the rest area of
the application.

5 Testing and Evaluation

In this section, we present the evaluation of the scheduling algorithms. In so
doing, we use real data on locations of pick-up and drop-off stations and real-
istic data regarding trip requests. We evaluate the algorithms based on a set of
criteria: (1) the maximum number of route requests in a day, (2) the maximum
number of minutes that a user is allowed to request a vehicle in the future,
(3) the start times density factor, that essentially means how “close” or how
“further away” in time, the start times of the route requests are, and (4) the
number of available EVs. We generated test cases with different configurations
and assigned them to the Short mode and Long mode algorithms.

Since we aim to maximize the number of customers being served in the
MoD scheme, we apply all those different criteria in order to better evaluate the
system under different conditions. The criteria 1 and 4 deal with the number of
requests and the number of vehicles respectively, while criteria 3 and 4 focus on
different requests times, as the problem is also directly associated with when the
customers post their requests for routes.

Charging stations coordinates were collected for Bristol, UK as it is a strong
candidate city to host a MoD scheme. We selected 27 stations that are also
EV charging stations today6 and categorized them in 5 traffic levels in order to
resemble realistic travel conditions. We assume that the stations nearest to the

5 https://github.com/ioannisgk/evsharing-app-release.
6 Charging stations data were collected from https://goo.gl/pWXFm6.

https://github.com/ioannisgk/evsharing-app-release
https://goo.gl/pWXFm6

104 I. Gkourtzounis et al.

center of the city have a higher number of requests, so the initial locations of the
vehicles are at the stations closer to the city center, with a 100% charge level.

We developed a “route requests” generation tool that generates requests with
random request times, start stations and finish stations. This tool helped us
simulate a large number of vehicles requests from users with many different
settings. We generated more than 400 test cases with different trip requests
and used them as input to the MoD software. The platform now uses both
the Short mode and Long mode algorithms to determine whether to accept or
deny these requests. The algorithms also need to calculate the travel time and
energy consumption of an EV during a trip, so we first calculate the average
theoretical speed of the vehicle, depending on a base speed and the traffic level
of the stations. Then, we compute the distance between the stations7 and the
trip duration in minutes. Energy consumption can be calculated by multiplying
the duration with a base charge cost per minute.

With a total of 54 EVs, 60 and 120 maximum requests per day, we ran sim-
ulations with 60–600 min between the time the request is communicated to the
MoD company and the start time of the trip, and different values of the requests
allocation density within a day. The last factor shows how “concentrated” or
close, the start times of the requests are, and we tested with 5 different density
factors (i.e., the lower the value the more uniformly distributed the requests are).

First, we tested with 60 maximum requests per day. The Short mode pro-
duced an efficiency rate (the percentage of the requests that get accepted by
the system and become routes) from 76.00%–86.67% and the Long mode from
77.00%–87.67% and it performed better with an average gain of 1.40%. When
testing with 120 maximum requests per day, the Short mode produced efficiency
rate from 57.17%–78.17% and the Long mode from 57.67%–80.83% and it per-
formed better with an average gain of 2.08%. Since the more trip requests are
accepted by the system the more customers are satisfied, we can directly con-
nect the average gain of the efficiency rate of an algorithm, with the customer
satisfaction levels. In other words, the Long mode algorithm achieves on average
2.08% higher agent satisfaction.

We also recorded the total minutes travelled by EVs and found that the gain
of the Long mode algorithm translates to 8.88 more minutes of travelling time
for every 60 requests, and 32.52 more minutes for every 120 requests for routes.
In terms of vehicle utilization, the Long mode achieves a 2.87% higher average
rate than the Short mode in 120 requests per day. However, the Short mode
algorithm due to its simpler design achieves 17.8% lower execution times.

Looking closer at the charts in Figs. 4, 5 and 6, we can observe the following:
(1) the Long mode algorithm performs better than the Short mode in all tests,
(2) the Long mode offers more gain in the efficiency of the system when the
number of requests increase, (3) when the time between the start times of the
requests increases, the efficiency increases, (4) the overall efficiency seems not
to be influenced by the requests allocation density within the day, (5) when the
number of requests within the day increases, the efficiency of the system drops.

7 Distance calculation using latitude and longitude https://goo.gl/3bDKuT.

https://goo.gl/3bDKuT

Towards Online Electric Vehicle Scheduling 105

Fig. 4. Efficiency rate and max time between request and trip, when the system handles
60 requests and it is equipped with 54 EVs.

Fig. 5. Efficiency rate and requests allocation density, when the system handles 60
requests and it is equipped with 54 EVs.

Finally, we tested the system with different numbers of vehicles, as this is
a very important factor for any MoD scheme company due to the high cost of
EVs. The chart in Fig. 7 shows that the average gain of the Long mode algorithm
is higher when using more vehicles and when the number of requests per day
increase. When using 18, 27, 36, 45 and 54 EVs in 60 requests per day, the gain is
1.17%, 1.27%, 1.70%, 1.47% and 1.40% respectively. In the case of 120 requests
per day, we have 1.83%, 1.93%, 2.27%, 2.05% and 2.08% gain. We conclude that

106 I. Gkourtzounis et al.

Fig. 6. Efficiency rate and max time between request and trip, when the system handles
120 requests and it is equipped with 54 EVs.

Fig. 7. Efficiency rate graph when the system handles 120 requests and the system is
equipped with 18, 27, 36, 45 and 54 EVs.

the optimal number of EVs for our use case of 27 stations in Bristol, is 36 vehicles
as it offers a slightly better increase in performance.

The Long mode algorithm has the advantage of looking ahead for vehicles
that can substitute a current candidate vehicle with enough charge and a future
route. That vehicle would be characterized as unavailable in Short mode, but
now we can make one swap with the help of the substitute vehicle, and make the
current candidate one, available for trips. Due to the fact that the Long mode
incorporates only one such swap, the gains are relatively small in percentage

Towards Online Electric Vehicle Scheduling 107

when compared with the results of the Short mode. We can see that this is
confirmed by the observations in the charts as discussed earlier.

In Fig. 5 the overall efficiency shows some small fluctuations and it is not
influenced significantly by the requests allocation density within the day, mainly
because of the low number of requests. Moreover, if we look closer in the chart
at Fig. 7, we will see that as the number of vehicles increases, the gain of the
efficiency rate of the Long mode algorithm is almost constant. This is to be
expected, because the current version of the Long mode incorporates only one
swap functionality and the number of requests (120) is relatively too small to
significantly affect the gain. A future version of the Long mode with more swaps
would increase the gain when the vehicles increase.

For our test strategy on the software package, we used black-box test design
techniques that included equivalence partitioning and boundary value analysis
for proper input validation testing. The system was evaluated when the user
scenarios were executed according to the test cases generated by our “route
requests” generation tool, which simulates user requests for trips. Taking all
tests into account, we can say that our software solution is thoroughly tested
and achieves its aim and objectives.

6 Conclusions and Future Work

In this paper, we studied a setting where electric vehicles (EVs) can be hired to
drive from pick-up to drop-off stations in a mobility-on-demand (MoD) scheme.
In this vein, we proposed two scheduling algorithms for assigning EVs to trips.
The first one is efficient for short term reservations, while the second for both
short and long term ones. While evaluating our algorithms in a setting using real
data on MoD locations, we observe that the long term algorithm achieves on
average 2.08% higher customer satisfaction and 2.87% higher vehicle utilization
compared to the short term one in 120 requests per day.

Moreover, we designed, implemented and tested a system that consists of a
web platform and a mobile application. The web platform allows administrators
to manage users, stations, vehicles, routes, and accepts or denies vehicle requests
using our algorithms. The mobile application lets users register, login, see the
available stations in their area and send vehicle requests for trips to the web
platform. The platform executes our algorithms in order to decide whether to
accept or deny them.

As future work we aim to apply machine learning techniques in order to
efficiently predict future customers’ demand. Moreover, we aim to use load bal-
ancing techniques to enhance the charging procedure of the EVs. In addition,
given that EVs hold large batteries we consider using them as temporal energy
storage devices in a vehicle-to-grid domain. Finally, we aim to study ways to
manage the uncertainty in future trip execution caused by unexpected circum-
stances such as traffic congestion and accidents.

108 I. Gkourtzounis et al.

References

1. Tomic, J., Kempton, W.: Using fleets of electric-drive vehicles for grid support. J.
Power Sources 168, 459–468 (2007)

2. Mitchell, W., Borroni-Bird, C., Burns, L.: Reinventing the Automobile: Personal
Urban Mobility for the 21st Century. The MIT Press, Cambridge (2010)

3. Pavone, M., Smith, S., Frazzoli, E., Rus, D.: Robotic load balancing for mobility-
on-demand systems. Int. J. Robot. Res. 31, 839–854 (2012)

4. Pavone, M., L. Smith, S., Frazzoli, E., Rus, D.: Load balancing for mobility-on-
demand systems. In: Robotics: Science and Systems (2011)

5. Smith, S., Pavone, M., Schwager, M., Frazzoli, E., Rus, D.: Rebalancing the rebal-
ancers: optimally routing vehicles and drivers in mobility-on-demand systems. In:
2013 American Control Conference, pp. 2362–2367 (2013)

6. Carpenter, T., Keshav, S., Wong, J.: Sizing finite-population vehicle pools. IEEE
Trans. Intell. Transp. Syst. 15, 1134–1144 (2014)

7. Drwal, M., Gerding, E., Stein, S., Hayakawa, K., Kitaoka, H.: Adaptive pricing
mechanisms for on-demand mobility. In: Proceedings of the 16th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1017–1025 . Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (2017)

8. Rigas, E., Ramchurn, S., Bassiliades, N.: Algorithms for electric vehicle scheduling
in large-scale mobility-on-demand schemes. Artif. Intell. 262, 248–278 (2018)

9. Barth, M., Shaheen, S.: Shared-use vehicle systems: framework for classifying car-
sharing, station cars, and combined approaches. Transp. Res. Rec. J. Transp. Res.
Board 1791, 105–112 (2002)

	Towards Online Electric Vehicle Scheduling for Mobility-On-Demand Schemes
	1 Introduction
	2 Problem Formulation
	3 Scheduling Algorithms
	3.1 Short Mode Algorithm
	3.2 Long Mode Algorithm

	4 MOD Software Package
	4.1 Web Platform
	4.2 Mobile Application

	5 Testing and Evaluation
	6 Conclusions and Future Work
	References

