JANUARY 2018

Evaluating Semantic Web: Creating Semantically
Enriched Web Pages for a Medical Use Case

Toannis Gkourtzounis
Department of Computing, The University of Northampton,
Park Campus, Boughton Green Road, NN2 7AL, Northampton, UK
icannisgk@live.com

Abstract—The evolution of the web with web applications, web
services and the use of social networks, created a new need to
automate complicated tasks. Software agents need to understand
and interpret data, and Semantic Web gives us the techniques
to accomplish that, where efficient knowledge reuse among users
and agents is the ultimate goal. In this paper we explore the
theoretical background of Semantic Web, presenting different
data representation standards like XML, RDF, RDFS and OWL.
Ontologies are the backbone of Semantic Web technologies, which
are used extensively in the health domain. We have analyzed,
designed and developed a solution for a medical use case where
a user can extract information in form of Microdata, related to
Medical Conditions. Our web application, Microdata WebParser,
can also convert Microdata to other popular formats, like RDFa
and JSON-LD. Taking into account the theoretical exploration
and our implementation of the application, we argue that (i)
creating new semantically enriched web pages by combining
data from different sources can be achieved with Semantic Web
techniques and (ii) some of the most important challenges of
Semantic Web are the visibility of data repositories and the
outdated and inconsistent datasets.

Keywords—Semantic web, knowledge representation, resource
description framework, ontology web language, artificial intelli-
gence, software agents.

I. INTRODUCTION

Today the web is a vast pool of information that is supported
by the world’s network infrastructures and delivers data to its
users. Web pages present data to humans and they succeed
at what they do. But what happens when we want data to be
readable by software that automate specific processes? How
can a program “understand” and interpret those data? The
language of the web is HTML, where tags are used to describe
the format of a web page. However, those tags do not reveal the
semantic meaning of the page itself or its contents [1]. Humans
can easily figure out their meaning, for example if a number on
a page represents a price. But semantic ambiguity is a serious
problem for a software that needs to make decisions based
on data. No universal standard for expressing the meaning of
information leads to limited knowledge reuse, and that is a
problem [2].

The idea of Semantic Web came from W3C director Tim
Berners-Lee’s vision that emphasized on knowledge exchange
[3]. It is an extension of the web, that provides a common
framework for humans and machines to understand and use
data effectively [4, 5]. In this paper we examine Semantic

Web in more depth, how data are represented and what are
the main challenges today. The third section focuses on the
medical applications of Semantic Web and a proposed solution
in a specific use case about Medical Conditions. In the last
section we will point out our findings and evaluate Semantic
Web techniques to create semantically enriched web pages.

II. BACKGROUND
A. Semantic Web

The evolution of the Internet has been remarkable, allowing
programmers and users accomplish more, with less effort
at every evolution cycle (eg. Web 1.0, 2.0, 3.0). Internet
allowed the development of programs that could communicate,
without the programmer to worry about the hardware network
infrastructure. The web made possible for users to work
with interconnected documents, without worrying about the
computers that store them. Semantic Web is the third level of
abstraction that allows programmers and users to reference real
world objects without concerning with how they are described
[6]. The main objective of Semantic Web is to provide structure
to the meaningful content of web pages, so that software
agents' can execute complicated tasks [7]. For example, an
agent to a clinic website will not only know the content
keywords, but also which days a specific doctor works so it
can choose appointment times by providing possible dates to
the page’s script.

The Semantic Web can be considered as a large online
database, with structured information that can be queried. The
difference with traditional databases is that information can
be heterogeneous, contradictory and incomplete [2]. When
structured collections of information and inference rules that
conduct automated reasoning are available, knowledge can be
represented and exchanged between users and agents [7]. And
that, is the power of Semantic Web. Terms like automated
decisions, inference and description logic were already used in
Artificial Intelligence and that created confusion, but we need
to keep in mind that Semantic Web is more about knowledge
representation and less about reasoning [8].

B. Data Representation

Data can be represented in different ways using different
techniques. One way is to create tags and allow users to define

'An agent is a piece of software working autonomously and continuously
in a particular environment in order to achieve a specific purpose.

JANUARY 2018

Fig. 1. Most used representation models for Semantic Web.

their content using XML [5]. These tags include attribute-value
pairs and they give structure to the document, without using
a fixed vocabulary [9]. The Resource Description Framework
(RDF) on the other hand, has three types of elements as
its building blocks: (i) the resources, identified by Uniform
Resource Identifiers (URIs), (ii) literals that are atomic val-
ues like strings and numbers, and (iii) properties which are
binary relationships between resources and literals [5, 10]. A
relationship between two resources or between a resource and
a literal is called a triple [9, 11]. The triple is an important
advantage over XML where only attribute-value pairs are used.
RDF can be regarded as an alphabet that allows a system to
build words and sentences but not a language. Meaning is
given when using a vocabulary that defines the meaning of
RDF statements. RDF Schema (RDFS) is such a vocabulary
that incorporates class membership, sub-class hierarchies, class
attributes and sub-property hierarchies [2, 9]. This way, RDFS
encodes the meaning of documents in sets of triples using a
vocabulary.

An ontology is a collection of information with a taxonomy
that defines the classes and relationships, and a set of inference
rules that empowers them with reasoning [7]. The Web On-
tology Language (OWL) is based on these formal conceptual-
izations of particular domains. OWL follows the requirements
and design principles from a specific field and expresses more
meaning and semantics than XML, RDF and RDFS [12]. Fig.
1 shows the representation models of Semantic Web and on
the top layer some of the most used vocabularies that are
defined using RDFS and OWL: FOAF (friend-of-a-friend),
SKOS (simple knowledge organization system) and COMM
(core ontology for multimedia).

Other standards of Semantic Web include Linked Data,
where an application or agent can start at one piece of Linked
Data and follow embedded links to other pieces on different
websites [13]. Microdata annotate information in documents
with specific machine readable labels, making them more
visible to search engines [14]. Data are recognized as a set
of items described by property name and value pairs. JSON-
LD is a JSON based format used to serialize Linked Data
when building web services. JSON-LD follows a strict RDF
syntax, so a JSON-LD document also represents an instance

of an RDF data model [13]. The most widely used standard to
query knowledge in Semantic Web, is the SPARQL language.
We can interact with SPARQL endpoint implementations and
extract results in specified formats [12].

C. Main Challenges

Although the Semantic Web gives us valuable tools for
automated software to interpret data and perform sophisticated
tasks, it faces some important challenges. First of all, it is
difficult to create a “universal ontology for everything” due to
huge space complexity, so distributed ontology development
is preferred [15]. This introduces even more problems, like
ontology integration, mapping, translation, consistency and
aging, where data from old ontologies can not be used in a
meaningful way [16].

Furthermore, low quality datasets with format problems gen-
erate query issues and only add to the slow worldwide adoption
of Semantic Web technologies [17]. Issues in heterogeneous
data, the mismatch of data models and immature best practises,
make the life of the programmers even more difficult when
implementing Semantic Web applications [18]. Searching for
data with SPARQL queries, require specific knowledge of the
underlying data, so retrieval of information remains a difficult
task as many data remain hidden [19].

III. MEDICAL APPLICATIONS

The power of Semantic Web is revealed when programs
collect data from different sources, process them and exchange
the results with other programs. Such software agents will
have increased effectiveness as more readable content and au-
tomated services become available [7]. Databases that generate
new information by creating new and updated ontologies, bring
important benefits to research communities where complex
knowledge is available, like in clinical and biomedical fields
[10]. Indeed, Semantic Web technology is used extensively in
the health domain [20] and opens new opportunities in health
care management where agents perform intelligent tasks for
the users [21]. Semantic web services seem very promising
in medical health planning and generally in any field where
human and agents interact semantically with the data [22].

A. Problem Statement

Focusing on the medical applications of Semantic Web, we
will apply the techniques we discussed earlier on our medical
use case. We assume that a client requests a program to
extract information related to Medical Conditions from differ-
ent sources, combine them and generate a new semantically
enriched web page. The source data should be in Microdata
format and the application should also convert them to RDFa?
and JSON-LD compliant files. The client will be able to select
a Medical Condition from a list and select an action. The
appropriate sources will be parsed, analyzed, the Microdata
will be extracted and a new web page will be created.

2RDFa is a syntax that allows us to embed RDF information into HTML
documents via attributes.

JANUARY 2018

B. Analysis & Design

In order to build the software, we first had to conduct a
research on Microdata websites related to Medical Conditions.
So, the first step is to find search engines that search in
websites that follow the guidelines of Microdata. Such a
website, should have the appropriate tags as per Schema.org,
a popular structured data markup schema for Microdata. The
candidate websites have to incorporate the properties and
values as described in the "MedicalCondition™ entity in health-
lifesci.schema.org.

The requirements for the web application are the following:

e The user can select a Medical Condition from a list

e The software should load related sources, and also:

e Parse sources for Microdata attributes and values

e Process the data (for example concatenate text for the

same attributes)

e Generate a web page with the new data, combining

attributes and values from sources, in Microdata format

e Convert Microdata to RDFa format

e Convert Microdata to JSON-LD format

The first problem that we encountered was finding the
suitable sources for our use case. We examined carefully the
most popular Semantic data repositories related to Medical
Conditions [23] to see if these websites use the Microdata
format. The Global Health Observatory® offers datasets in
HTML, CSV, XML, JSON and Excel formats, but not in
Microdata. Bio2RDF* is a biological knowledge base that
contains RDF data and Microdata, but they are not grouped
in Medical Conditions categories. CardioSHARE? only in-
corporates a SPARQL query engine for RDF data and this
was not helpful in our case. So, the next step was to find a
source code search engine. Our search in PublicWWW?$ for the
term “http://schema.org/MedicalCondition” gave us our main
sources with Microdata: blausen.com and coreem.net.

For the development of our web application we chose
the Java Spring Framework, a well established application
framework, fully compatible with the Model-View-Controller
(MVC) pattern. It has a layered architecture and uses Services
classes to process data and pass them to Models. The data are
sent to the Controllers that make them available to specific
JSP pages. Web browsers can interpret the JSP pages just
like simple HTML pages. Spring Framework has formalized
the best practises as design patterns and it is widely used for
developing GUI applications, web applications and applets.

The graphical user interface consists of three main pages.
On the first page, the user is presented with a list of Medical
Conditions where he can select one condition and click on
”Generate” to move on to the second page. In the background,
the application loads the related sources, parses them and
recognizes the properties and values from the Microdata on the
source web pages. On the second page, the sources, properties
and values are shown in tables and the user has the following
options: generate Microdata, generate RDFa code or generate

3http://apps.who.int/gho/data/node.home
“http://bio2rdf.org/
Shttp://biordf.net/cardioSHARE/
Shttps://publicwww.com/

@]
| Home
page
User selects a
Medical Condition

Parse source URLs and
show Microdata

Generate
page

Generate Action

Generate JSON-LD
code

Generate new

Microdata web page code

Generate RDFa ‘

Web service

Show page with [page
generated code

End -

Fig. 2. Microdata WebParser flow diagram. The user selects a Medical
Condition, the application parses the source URLs and then generates the
desired code.

JSON-LD code. The third page processes the data according
to the user’s selection and generates the corresponding code
(Fig. 2).

For developing the application according to Spring and
MVC standards, we needed a HomeController class, responsi-
ble for getting the sources, calling Services classes, adding
data to the Model and showing specific JSP pages. The
GetSourcesService class gets all sources as a HashMap from
SourcesDAO where the URLs are stored. After studying
the source code from our sources, we decided to create
two separate Services for parsing the web pages because
each website used a slight different approach on incorpo-
rating Microdata (for example, adding empty values on cer-
tain descriptions). ParseModelService and ParseMode2Service
classes serve this purpose. Finally, GenerateMicrodataService,
GenerateRDFaService and GenerateJSONLDService, provide
the functionality for creating a new web page with combined
Microdata and generating RDFa or JSON-LD code (Fig. 3).

C. Implementation

Following the best practises of Spring Framework, we
organized our code into three packages. The controller package
includes the HomeController class that uses instances of the

JANUARY 2018

<==Java Class=>
(@ParseMode1Service

eom.isannisgk .microdatawebparser services | -parseMode! Service

==<Java Class=>
(®HomeController

com.ioannisgk .microdatawebparser.controllers

==Java Class==
(9 GenerateMicrodataService

-generateMicrodataService | com.ioannisgk.microdatawebparser services

0.1] OcHomeControlleru;)
@ main(Model): String

OC ParzeMode1 Service()

@ parse(Document):HashMap

@ generate(HitpServietReguest Model). String
.
@ wehservice(HttpServietRequest Model): String T

- 0.1 | gFenerateMicrodataService()

@ generate(HashMap HashMap): String

fode2Service

<<Java Class>>

-generateRDF3 axg%

3 <=Java Class==
0.1

(BParseMode2Service
com.icannisgk. microdatawebparser. services

OC ParseMode2Service()

==Java Class=>
(®SourcesDAO

com.ioannisgk microdatawebparser repositories

(9 GenerateRDFaService

com.ioannisgk.microdatawebparser. services

ocGE|1ermeRDFaServ'ic:ei)

@ parse(Document):HashMap

& datal1: String
& datal2: String
& datal3: String
& clatal4: String

-getSourcesService

& dlatald: String
& dlatal S String
& catalé: String

==Java Class==
(@ GetSourcesService

com.ipannisgk microdatawebparser services -sourcesDAO

o medicalConditions: HashMap<String String[]=

@ generate(HashMap HashiMap): String

-generate)SONLDSery 0.1

<==Java Class==
(@ Generate JSONLDService

com.ioannisgk.microdatawebparser.services

0.1

& CetSourcesService() & SourcesDAO()

@ getSources()HashMap

@ alSources():HashMap

& GenerateSONLDService()
@ generate(HashMap HashMap): String

Fig. 3. Class diagram of our web application that extracts Microdata,
processes them and creates a new semantically enriched web page.

Services and their methods to process data and call the
corresponding JSP pages. The repositories package contains
the SourceDAO class. The Medical Conditions are represented
as a HashMap with String keys and array of String values.
The constructor of the class initializes each key with the
URLSs that contain Microdata related to a Medical Condition.
The GetSourcesService in the Services package provides the
method getSources to the HomeController.

We used the Jsoup library for parsing the HTML content and
recognizing the “itemscope”, “itemprop” and “itemtype” tags
which were present in our sources. In ParseModelService we
selected the document, iterated the elements and discarded the
variable containing certain values (like the ”View disclaimer”
and ”...” characters). This was done because those values car-
ried semantically incorrect information. SchemaKeywords and
SchemaDescription are ArrayLists with the actual Microdata
and we saved them in the extractedCondition HashMap so they
could be used later (see Appendix A). Following the same
logic, we implemented ParseMode2Service while recognizing
treatment and pathophysiology as extra fields in the Microdata
from the second source.

When generating a new web page with Microdata, we
populated the required HTML code with the “itemscope”,
“itemprop” and itemtype” tags. The variables included in the
new Microdata web page are: name, medicalSpecialty and de-
scription from source 1 and alternateName, medicalSpecialty,
pathophysiology and possibleTreatment from source 2. This
way, we combined information from both sources and created
a new semantically enriched web page (see Appendix A).
The variable “htmlCode” is passed from the HomeController
to the Model and then to the JSP page that shows the
semantic information in the form of two tables. By studying the
structure and characteristics of RDFa and JSON-LD standards,

we created the implementation of GenerateRDFaService and
GenerateJ]SONLDService classes.

In our HomeController class we declare the HashMap
variables extractedCondition] and extractedCondition2 to hold
the semantic data from our sources. User’s selection is stored
in the String “selection” and Strings “’sourcel” and “’source2”
contain the URLs of the sources that are related to the Medical
Condition selected. The semantic data are extracted and saved
to extractedCondition1 and extractedCondition2 HashMaps by
the Service. The type of code to be generated is retrieved
from the String “type”, so we call the “generate” method
from the appropriate Service to create the code we need. The
String “htmlCode” is then passed to the Model and used in
the “webservice” JSP page (see Appendix A).

Finally, we installed MySql and Tomcat 9.0 on a hosting
server. Tomcat is a web server and servlet container from
Apache that allows JSP and Java Servlets to run. We exported
the WAR’ file from Eclipse IDE and uploaded it to our
server. We did not encountered any problems in the imple-
mentation, apart from some research and parsing challenges
mentioned earlier. All source code is freely available on
GitHub® and the final web application demo is live on the link:
http://178.62.121.237:8080/microdata-webparser/home/main.

D. Testing

The next step was to perform black-box and white-box
testing. In black-box testing, we did not consider the internal
structure and we tested the software with different inputs
and examined its behavior. We focused mainly on functional
testing. We also noticed that our web application, Microdata
WebParser, is a simple application with only eight options
for user input. Each option gives three different outcomes, so

7A WAR file is a compressed package containing Java web applications.
8Full source code on GitHub: https://goo.gl/y8xRdX

JANUARY 2018

Select Generate Expected Status
Result
Condition 01 | Microdata Show Microdata | PASS
Condition 01 | RDFa Show RDFa PASS
Condition 01 | JSON-LD Show JSON-LD | PASS
Condition 02 | Microdata Show Microdata | PASS
Condition 02 | RDFa Show RDFa PASS
Condition 02 | JSON-LD Show JSON-LD | PASS
Condition 03 | Microdata Show Microdata | PASS
Condition 03 | RDFa Show RDFa PASS
Condition 03 | JSON-LD Show JSON-LD | PASS
Condition 04 | Microdata Show Microdata | PASS
Condition 04 | RDFa Show RDFa PASS
Condition 04 | JSON-LD Show JSON-LD | PASS
Condition 05 | Microdata Show Microdata | PASS
Condition 05 | RDFa Show RDFa PASS
Condition 05 | JSON-LD Show JSON-LD | PASS
Condition 06 | Microdata Show Microdata | PASS
Condition 06 | RDFa Show RDFa PASS
Condition 06 | JSON-LD Show JSON-LD | PASS
Condition 07 | Microdata Show Microdata | PASS
Condition 07 | RDFa Show RDFa PASS
Condition 07 | JSON-LD Show JSON-LD | PASS
Condition 08 | Microdata Show Microdata | PASS
Condition 08 | RDFa Show RDFa PASS
Condition 08 | JSON-LD Show JSON-LD | PASS

Fig. 4. All test cases for our application with user selection, generate action,
expected result and status, which is based on the actual and expected results.

we created 24 test cases in order to achieve 100% decision
coverage for our code. This was very convenient and with
those 24 test cases we applied both black-box and white-box
test design techniques, as decision coverage deals with the
internal structure of the software.

The table in Fig. 4 presents all test cases for our application.
The first column shows the selected Medical Condition, the
second column shows the action of the user, the expected result
is on the third column and on the fourth column the Status
indicates if the actual result is the same with the expected
result. As we can see, all test cases passed the testing. The list
of Medical Conditions used in the test cases are:

Condition 01: Abdominal Aneurysm
Condition 02: Asthma

Condition 03: Atrial Fibrillation
Condition 04: Ectopic Pregnancy
Condition 05: Herpes Zoster
Condition 06: Myocardial Infarction
Condition 07: Otitis Media
Condition 08: Pulmonary Embolism

IV. CONCLUSIONS

With its roots in Artificial Intelligence, Semantic Web
focuses on knowledge representation with the main objec-
tive of efficient knowledge reuse. Creating new and updated
ontologies from existing data, brings important benefits to
research communities worldwide, like in biomedical fields

Microdata WebParser

Information Page

Select an Action Generate Code

Instructions
The u

Source 2: https://coreem.neticore/hd-unstable-pe/

Note: Parsing and generating might take a few seconds # Property Value
Alternate Name Hemodynamically Unstable Pulmonary Embolism

Keywords emergency-med

Pathophysiology. @ PE Pathophysiology (Wood 2011)

Fig. 5. The page where Microdata WebParser recognizes and displays
Microdata from the sources. The user can generate a new page or convert
Microdata to RDFa and JSON-LD formats.

and the health domain in general. However, Semantic Web
faces some very important challenges. There is no universal
ontology of everything and distributed ontology development
introduces the problems of ontology integration, mapping,
translation, consistency and aging. Low quality of datasets with
format problems, the mismatch of data models and immature
best practises generate query issues and make implementing
Semantic Web applications a difficult job.

We analyzed, designed and developed a solution, Microdata
WebParser (Fig. 5, more screenshots available in Appendix
B), for a medical use case where a program should extract
information in form of Microdata related to Medical Condi-
tions and generate a new semantically enriched web page,
RDFa and JSON-LD code. We encountered two important
problems during the development. First, it was difficult to find
suitable sources as even the most popular Semantic Web data
repositories did not include web pages with Microdata. We
turned our attention to source code search engines to find
suitable sources. The second problem was that our sources
used a slight different approach on incorporating Microdata in
their code with some inconsistencies and format errors, so we
had to create separate classes for parsing their source code.

Both the theoretical exploration and the implementation of
our application, bring us to the conclusion that (i) creating
new semantically enriched web pages by combining data
from different sources can be achieved with Semantic Web
techniques and (ii) some of the most important challenges
of Semantic Web are the visibility of data repositories and
the outdated and inconsistent datasets. Dealing with those
challenges will reveal the true power of Semantic Web, and
enhance knowledge reuse and exchange between users and
agents.

JANUARY 2018

(1]

(2]

(3]

(4]
[5]

(6]

(71

(8]

(91

[10

[11

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

P. Warren and J. Davies, "The Semantic Web From Vision to Reality”,
ICT Futures, pp. 53-66, 2008.

E. Oren and S. Schenk, ”Semantic Web Basics”, Multimedia Semantics,
pp. 81-98, 2011.

O. Mustapaa, A. Karahoca, D. Karahoca and H. Uzunboylu, “Hello
World, Web Mining for E-Learning”, 2017. .

D. Jeon and W. Kim, "Development of Semantic Decision Tree”, 2011.

Q. Quboa and M. Saraee, A State-of-the-Art Survey on Semantic Web
Mining”, Intelligent Information Management, vol. 05, no. 01, pp. 10-17,
2013.

J. Hendler and T. Berners-Lee, "From the Semantic Web to social
machines: A research challenge for Al on the World Wide Web”,
Artificial Intelligence, vol. 174, no. 2, pp. 156-161, 2010.

T. Berners-Lee, J. Hendler and O. Lassila, "The Semantic Web”, Scien-
tific American, vol. 284, no. 5, pp.28-37, 2001.

”Semantic Web Misconceptions - Cambridge Seman-
tics”, Cambridge Semantics, 2017. [Online]. Available:
https://www.cambridgesemantics.com/blog/semantic-university/intro-
semantic-web/semantic-web-misconceptions/. [Accessed: 12- Dec-
2017].

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra,
M. Erdmann and I. Horrocks, ”"The Semantic Web: the roles of XML
and RDF”, IEEE Internet Computing, vol. 4, no. 5, pp. 63-73, 2000.

V. Nebot and R. Berlanga, “Finding association rules in semantic web
data”, Knowledge-Based Systems, vol. 25, no. 1, pp. 51-62, 2012.

"RDF 1.1 Concepts and Abstract Syntax”, W3.org, 2017. [Online].
Available: https://www.w3.org/TR/rdf11-concepts/. [Accessed: 12- Dec-
2017].

E. Oren and S. Schenk, “Semantic Web Languages”, Multimedia
Semantics, pp. 99-128, 2011.

”JSON-LD 1.07, W3.org, 2017. [Online]. Available:
https://www.w3.org/TR/json-1d/. [Accessed: 12- Dec- 2017].

A. Nogales, M. Sicilia, S. Snchez-Alonso and E. Garcia-Barriocanal,
”Linking from Schema.org microdata to the Web of Linked Data: An
empirical assessment”, Computer Standards Interfaces, vol. 45, pp. 90-
99, 2016.

L. Ding, P. Kolari, Z. Ding and S. Avancha, ”Using Ontologies in the
Semantic Web: A Survey”, Integrated Series in Information Systems, pp.
79-113, 2005.

A. Tjo, A. Andjomshoaa, F. Shayeganfar and R. Wagner, ”Semantic
Web Challenges and New Requirements”, Proceedings of the 16th
International Workshop on Database and Expert Systems Applications
(DEXAOS5), 2005.

J. Martinez-Rodriguez, I. Lopez-Arevalo and A. B. Rios-Alvarado, A
classification of challenges in the Semantic Web based on the general
architecture”, 26th International Workshop on Database and Expert
Systems Applications, 2015.

B. Heitmann, S. Kinsella, C. Hayes and S. Decker, “"Implementing
Semantic Web applications: Reference Architecture and Challenges”,
SWESE 2009: 5th International Workshop on Semantic Web Enabled
Software Engineering, 2009.

X. Zenuni, B. Raufi, F. Ismaili and J. Ajdari, ”State of the Art
of Semantic Web for Healthcare”, Procedia - Social and Behavioral
Sciences, vol. 195, pp. 1990-1998, 2015.

W. Woensel, N. Haider, P. Roy, A. Ahmad and S. Abidi, ”A Comparison
of Mobile Rule Engines for Reasoning on Semantic Web Based Health
Data”, 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014.

J. Niekerk and K. Griffiths, ”Advancing Health Care Management with
the Semantic Web”, 2008 Third International Conference on Broadband
Communications, Information Technology Biomedical Applications,
2008.

[22] M. Gangwar, R. Yadav and R. Mishra, ”Semantic Web Services
for Medical Health Planning”, Ist Intl Conf. on Recent Advances in
Information Technology RAIT-2012, 2012.

[23] X. Zenuni, B. Raufi, F. Ismaili and J. Ajdari, ”State of the Art
of Semantic Web for Healthcare”, Procedia - Social and Behavioral
Sciences, vol. 195, pp. 1990-1998, 2015.

