
Docker Anti-Patterns
CONTINUOUS DEPLOYMENT / DELIVERY



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 2

ANTI-PATTERN 1 

Treating Docker containers as Virtual Machines 4

ANTI-PATTERN 2 

Creating Docker images that are not transparent 6

ANTI-PATTERN 3

Creating Dockerfiles that have side effects 8

ANTI-PATTERN 4 

Confusing images that are used for development 
with those that are used for deployment 11

ANTI-PATTERN 5 

Using different images for each environment 
(qa, stage, production) 12

ANTI-PATTERN 6 

Creating Docker images on production servers 14

ANTI-PATTERN 7 

Working with git hashes instead of Docker images 16

ANTI-PATTERN 8

Hardcoding secrets and configuration into 
container images 18

ANTI-PATTERN 9

Creating Docker files that do too much 19

ANTI-PATTERN 10 

Creating Docker files that do too little 21

Table of Contents



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 3

Codefresh is the only Continuous Integration/Delivery platform designed 
specifically for microservices and containers running on Kubernetes.

Codefresh includes comprehensive built-in support for Helm charts and 
deployments and even ofers a private free Helm repository with each account. 
Combined with the private Docker registry and dedicated Kubernetes
dashboards, Codefresh is an one-stop-shop for microservice development.



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 4

Container usage is exploding. Even if you are not yet convinced that Kubernetes 
is the way forward, it is very easy to add value just by using Docker on its own. 
Containers can now simplify both deployments and CI/CD pipelines.

The official Docker best practices page is highly technical and focuses more on 
the structure of the Dockerfile instead of generic information on how to use 
containers in general.  
Every Docker newcomer will at some point understand the usage of Docker 
layers, how they are cached, and how to create small Docker images. Multi-stage 
builds are not rocket science either. The syntax of Dockerfiles is fairly easy to 
understand.

However, the main problem of container usage is the inability of companies to look 
at the bigger picture and especially the immutable character of containers/images. 
Several companies in particular attempt to convert their existing VM-based 
processes to containers with dubious results. There is a wealth of information on 
low-level details of containers (how to create them and run them), but very little 
information on high level best practices.

To close this documentation gap, I present to you a list of high-level Docker best-
practices. Since it is impossible to cover the internal processes of every company 
out there I will instead explain bad practices (i.e. what you should not do). 
Hopefully, this will give you some insights on how you should use containers.

1 6

7

8

9

10

2

3

4

5

Attempting to use VM practices on 
containers.

Creating Docker files that are not 
transparent.

Creating Dockerfiles that have side 
effects.

Confusing images used for deployment 
with those used for development.

Building different images per environment

Pulling code from git into production 
servers and building images on the fly.

Promoting git hashes between teams.

Hardcoding secrets into container images.

Using Docker as poor man’s CI/CD.

Assuming that containers are a dumb 
packaging method.

Here is the complete list of bad practices that we will examine:

https://thenewstack.io/docker-based-dynamic-tooling-a-frequently-overlooked-best-practice/
https://thenewstack.io/docker-based-dynamic-tooling-a-frequently-overlooked-best-practice/


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 5

ANTI-PATTERN 1 

Treating Docker containers as Virtual Machines

Before going into some more practical examples, let’s get the basic theory out of 
the way first. Containers are not Virtual Machines. At first glance, they might look 
like they behave like VMs but the truth is completely different. Stackoverflow and 
related forums are filled with questions like:

1. How to I update applications running inside containers?

2. How do I ssh in a Docker container?

3. How do I get logs/files from a container?

4. How do I apply security fixes inside a container?

5. How do I run multiple programs in a container?

All these questions are technically correct, and the people that have answered 
them have also given technically correct answers. However, all these questions 
are the canonical example of the XY problem. The real question behind these 
questions is:

“How can I unlearn all my VM practices and processes and change my workflow to 
work with immutable, short-lived, stateless containers instead of mutable, long-
running, stateful VMs?”

Many companies out there are trying to reuse the same practices/tools/
knowledge from VMs in the container world. Some companies were even caught 
completely off-guard as they had not even finished their bare-metal-to-vm 
migration when containers appeared.

Unlearning something is very difficult. Most people that start using containers see 
them initially as an extra abstraction layer on top of their existing practices:

https://unix.stackexchange.com/questions/123482/application-updates-inside-of-docker-containers
https://stackoverflow.com/questions/28134239/how-to-ssh-into-docker
https://serverfault.com/questions/611082/how-to-handle-security-updates-within-docker-containers
https://serverfault.com/questions/611082/how-to-handle-security-updates-within-docker-containers
https://stackoverflow.com/questions/19948149/can-i-run-multiple-programs-in-a-docker-container
https://en.wikipedia.org/wiki/XY_problem


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 6

Containers are not VMs

In reality, containers require a completely different view and change of existing 
processes. You need to rethink all your CI/CD processes when adopting 
containers.

There is no easy fix for this anti-pattern other than reading about the nature of 
containers, their building blocks, and their history (going all the way back to the 
venerable chroot).

If you regularly find yourself wanting to open ssh sessions to running containers in 
order to “upgrade” them or manually get logs/files out of them you are definitely 
using Docker in the wrong way and you need to do some extra reading on how 
containers work.

Containers require a new way of thinking



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 7

ANTI-PATTERN 2 

Creating Docker images that are not transparent

A Dockerfile should be transparent and self-contained. It should describe all the 
components of an application in plain sight. Anybody should be able to get the 
same Dockerfile and recreate the same image. It is ok if the Dockerfile downloads 
extra libraries (in a versioned and well-controlled manner) but creating Dockerfiles 
that perform “magic” steps should be avoided.

Here is a particularly bad example:

Now don’t get me wrong. I love Puppet as it is a great tool (or Ansible, or Chef for 
that matter). Misusing it for application deployments might have been easy with 
VMs, but with containers it is disastrous.

First of all, it makes this Dockerfile location-dependent. You have to build it on a 
computer that has access to the production Puppet server. Does your workstation 
have access to the production puppet server? If yes, should your workstation 
really have access to the production puppet server?

FROM alpine:3.4

RUN apk add --no-cache \
      ca-certificates \
      pciutils \
      ruby \
      ruby-irb \
      ruby-rdoc \
      && \
    echo http://dl-4.alpinelinux.org/alpine/edge/
community/ >> /etc/apk/repositories && \
    apk add --no-cache shadow && \
    gem install puppet:"5.5.1" facter:"2.5.1" && \
    /usr/bin/puppet module install puppetlabs-apk

# Install Java application
RUN /usr/bin/puppet agent --onetime --no-daemonize

ENTRYPOINT ["java","-jar","/app/spring-boot-application.
jar"]



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 8

But the biggest problem is that this Docker image cannot be easily recreated. Its 
contents depend on what the puppet server had at the time of the initial build. If 
you build the same Dockerfile today you might get a completely different image. 
And if you don’t have access to the puppet server or the puppet server is down 
you cannot even build the image in the first place. You don’t even know what is 
the version of the application if you don’t have access to the puppet scripts.

The team that created this Dockerfile was just lazy. There was already a puppet 
script for installing the application in a VM. The Dockerfile was just retrofitted to 
do the same thing (see the previous anti-pattern).

The fix here is to have minimal Dockerfiles that describe explicitly what they do. 
Here is the same application with the “proper” Dockerfile.

FROM alpine:3.4

ENV MY_APP_VERSION="3.2"

RUN apk add --no-cache \
      ca-certificates

WORKDIR /app
ADD  http://artifactory.mycompany.com/releases/${MY_APP_
VERSION}/spring-boot-application.jar .

ENTRYPOINT ["java","-jar","/app/spring-boot-application.
jar"]

Notice that:

There is no dependency on puppet infrastructure. The Dockerfile 
can be built on any developer machine that has access to the binary 
repository

Versions of the software are explicitly defined.

It is very easy to change the version of the application by editing only 
the Dockerfile (instead of puppet scripts).

1.

2.

3.



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 9

ANTI-PATTERN 3 

Creating Dockerfiles that have side effects

This was just a very simple (and contrived) example. I have seen many Dockerfiles 
in the wild that depend on “magic” recipes with special requirements for the time 
and place they can be built. Please don’t write your Dockerfiles in this manner, as 
developers (and other people who don’t have access to all systems) will have great 
difficulties creating Docker images locally.

An even better alternative would be if the Dockerfile compiled the source Java 
code on its own (using multi-stage builds). That would give you even greater 
visibility on what is happening in the Docker image.

Let’s imagine that you are an operator/SRE working at very big company where 
multiple programming languages are used. It would be very difficult to become an 
expert in all the programming languages and build systems out there.

This is one of the major advantages of adopting containers in the first place. You 
should be able to download any Dockerfile from any development team and build 
it without really caring about side effects (because there shouldn’t be any).

Building a Docker image should be an idempotent operation. It shouldn’t matter if 
you build the same Dockerfile one time or a thousand times. Or if you build it on a 
CI server first and then on your workstation.

Yet, there are several Dockerfiles out there that during the build phase…

Containers offer isolation as far as the host filesystem is concerned but there is 
nothing protecting you from a Dockerfile that contains a RUN directive with curl 
POSTING an HTTP payload to your intranet.

1.    perform git commits or other git actions,

2.   clean up or tamper with database data,

3.   or call other external services with POST/PUT operations.



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 10

Here is a simple example where a Dockerfile both packages (a safe action) and 
publishes (an unsafe action) an npm application in a single run.

FROM node:9
WORKDIR /app

COPY package.json ./package.json
COPY package-lock.json ./package-lock.json
RUN npm install
COPY . .

RUN npm test

ARG npm_token

RUN echo "//registry.npmjs.org/:_authToken=${npm_token}" > 
.npmrc
RUN npm publish --access public

EXPOSE 8080
CMD [ "npm", "start" ]

This Docker file confuses two unrelated concerns, releasing a version of the 
application, and creating a Docker image for it. Maybe sometimes these two 
actions happen indeed together at the same time, but this is no excuse for 
polluting a Dockerfile with side effects.

Docker is NOT a generic CI system and it was never meant to be one. Don’t abuse 
Dockerfiles as glorified bash scripts that have unlimited power. Having side effects 
while containers are running is ok. Having side effects during container build time 
is not.

The solution is to simplify your Dockerfiles and make sure that they only contain 
idempotent operations such as:

•   Cloning source code

•   Downloading dependencies

•   Compiling/packaging code

•   Processing/Minifying/Transforming local resources

•   Running scripts and editing files on the container filesystem only



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 11

Also, keep in mind the ways Docker caches filesystem layers. Docker assumes 
that if a layer and the ones before it have not “changed” they can be reused from 
cache. If your Dockerfile directives have side effects you essentially break the 
Docker caching mechanism.

Let’s say that you try to build this Dockerfile and your unit tests fail. You make 
a change to the source code and you try to rebuild again. Docker will assume 
that the layer that clears the DB is already “run” and it will reuse the cache. So 
your unit tests will now run in a DB that isn’t cleaned and contains data from the 
previous run.

In this contrived example, the Dockerfile is very small and it is very easy to 
locate the statement that has side effects (the mysql command) and move it to 
the correct place in order to fix layer caching. But in a real Dockerfile with many 
commands, trying to hunt down the correct order of RUN statements is very 
difficult if you don’t know which have side effects and which do not.

Your Dockerfiles will be much simpler if all actions they perform are read-only and 
with local scope.

FROM node:10.15-jessie

RUN apt-get update && apt-get install -y mysql-client && rm 
-rf /var/lib/apt

RUN mysql -u root --password="" < test/prepare-db-for-
tests.sql

WORKDIR /app

COPY package.json ./package.json
COPY package-lock.json ./package-lock.json
RUN npm install
COPY . .

RUN npm integration-test

EXPOSE 8080
CMD [ "npm", "start" ]



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 12

ANTI-PATTERN 4 

Confusing images that are used for development 
with those that are used for deployment

In any company that has adopted containers, there are usually two separate 
categories of Docker images. First, there are the images that are used as the actual 
deployment artifact sent to production servers.

The deployment images should contain:

The second category is the images used for the CI/CD systems or developers and 

might contain:

The application code in minified/compiled form plus its runtime 
dependencies.

Nothing else. Really nothing else

The source code in its original form (i.e. unminified)

Compilers/minifiers/transpilers

1.

1.

2.

2.

3.

4.

5.

6.

Testing frameworks/reporting tools

Security scanning, quality scanning, static analyzers

Cloud integration tools

Other utilities needed for the CI/CD pipeline

It should be obvious that these categories of container images should be handled 
separately as they have different purposes and goals. Images that get deployed to 
servers should be minimal, secure and battle-hardened. Images that get used in 
the CI/CD process are never actually deployed anywhere so they have much less 
strict requirements (for size and security).

Yet for some reason, people do not always understand this distinction. I have seen 
several companies who try to use the same Docker image both for development 

https://thenewstack.io/understanding-the-difference-between-ci-and-cd/


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 13

ANTI-PATTERN 5 

Using different images for each environment
(qa, stage, production)

One of the most important advantages of using containers is their immutable 
attribute. This means that a Docker image should be built only once and then 
promoted to various environments until it reaches production.

Promoting the same Docker image

and for deployment. Almost always what happens is that unrelated utilities and 
frameworks end up in the production Docker image.

There are exactly 0 reasons on why a production Docker image should contain git, 
test frameworks, or compilers/minifiers.

The promise of containers as a universal deployment artifact was always about 
using the same deployment artifact between different environments and making 
sure that what you are testing is also what you are deploying (more on this later). 
But trying to consolidate local development with production deployments is a 
losing battle.

In summary, try to understand the roles of your Docker images. Each image should 
have a single role. If you are shipping test frameworks/libraries to production you 
are doing it wrong. You should also spend some time to learn and use multi-stage 
builds.

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 14

Because the exact same image is promoted as a single entity, you get the 
guarantee that what you are testing in one environment is the same as the other.

I see a lot of companies that build different artifacts for their environments with 
slightly different versions of code or configuration.

Different image per environment

This is problematic because there is no guarantee that images are “similar enough” 
to verify that they behave in the same manner. It also opens a lot of possibilities 
for abuse, where developers/operators are sneaking in extra debugging tools 
in the non-production images creating an even bigger rift between images for 
different environments.

Instead of trying to make sure that your different images are the same as possible, 
it is far easier to use a single image for all software lifecycle phases.

Note that it is perfectly normal if the different environments use different 
settings (i.e. secrets and configuration variables) as we will see later in this article. 
Everything else, however, should be exactly the same.



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 15

ANTI-PATTERN 6 

Creating Docker images on production servers

The Docker registry serves as a catalog of existing applications that can be re-
deployed at any time to any additional environments. It is also a central location of 
application assets with extra metadata along with previous historical versions of 
the same application. It should be very easy to choose a specific tag of a Docker 
image and deploy it to any environment.

One of the most flexible ways of using Docker registries is by promoting images 
between them. An organization has at least two registries (the development one 
and the production one). A Docker image should be built once (see previous anti-
pattern) and placed in the development registry. Then, once integration tests, 
security scans, and other quality gates verify its correct functionality, the image 
can be promoted to the production Docker registry to be sent to production 
servers or Kubernetes clusters.

Is also possible to have different organizations for Docker registries per region/
location or per department. The main point here is that the canonical way for 
Docker deployments also includes a Docker registry. Docker registries serve 
both as an application asset repository as well as intermediate storage before an 
application is deployed to production.

A very questionable practice is the complete removal of Docker registries from the 
lifecycle and the pushing of source code directly to production servers.

Building images in production servers



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 16

Using a Docker registry

Production servers use “git pull” to get the source code and then Docker build to 
create an image on the fly and run it locally (usually with Docker-compose or other 
custom orchestration). This “deployment method” essentially employs multiple 
anti-patterns all at once!

This deployment practice suffers from a lot of issues, starting with security. 
Production servers should not have inbound access to your git repositories. If a 
company is serious about security, this pattern will not even fly with the security 
committee. There is also no reason why production servers should have git 
installed. Git (or any other version control system) is a tool intended for developer 
collaboration and not an artifact delivery solution.

But the most critical issue is that with this “deployment method” you bypass 
completely the scope of Docker registries. You no longer know what Docker image 
is deployed on your servers as there is no central place that holds Docker images 
anymore.

This deployment method might work ok in a startup, but will quickly become 
inefficient in bigger installations. You need to learn how to use Docker registries 
and the advantages they bring (also related to security scanning of containers).

Docker registries have a well-defined API, and there are several open-source and 
proprietary products that can be used to set-up one within your organization.

Notice also that with Docker registries your source code securely resides behind the 
firewall and never leaves the premise



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 17

ANTI-PATTERN 7 

Working with git hashes instead of Docker images

A corollary to the previous two anti-patterns is that once you adopt containers, 
your Docker registry should become the single point of truth for everything. 
People should talk in terms of Docker tags and image promotions. Developers and 
operators should use containers as their common language. The hand-over entity 
between teams should be a container and not a git hash.

Talking about git hashes

This comes in contrast with the old way of using Git hashes as “promotion” 
artifacts. The source code is of course important, but re-building the same hash 
over and over in order to promote it is a waste of resources (see also anti-pattern 
5). Several companies think that containers should only be handled by operators, 
while developers are still working with just the source code. This could not be 
further from the truth. Containers are the perfect opportunity for developers and 
operators to work together.



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 18

Ideally, operators should not even care about what goes on with the git repo of 
an application. All they need to know is if the Docker image they have at hand is 
ready to be pushed to production or not. They should not be forced to rebuild a 
git hash in order to get the same Docker image that developers were using in pre-
production environments.

You can understand if you are the victim of this anti-pattern by asking operators 
in your organization. If they are forced to become familiar with application 
internals such as build systems or test frameworks that normally are not related 
to the actual runtime of the application, they have a heavy cognitive load which is 
otherwise not needed for daily operations.

Talking about git hashes



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 19

ANTI-PATTERN 8

Hardcoding secrets and configuration into 
container images

This anti-pattern is closely related to Anti-pattern 5 (different images per 
environment). In most cases when I ask companies why they need different 
images for qa/staging/production, the usual answer is that they contain different 
configurations and secrets.

This not only breaks the main promise of Docker (deploy what you tested) but 
also makes all CI/CD pipelines very complex as they have to manage secrets/
configuration during build time.

The anti-pattern here is, of course, the hard-coding of configurations. Applications 
should not have embedded configurations. This should not be news for anybody 
who is familiar with 12-factor apps.

Your applications should fetch configuration during runtime instead of build 
time. A Docker image should be configuration agnostic. Only during runtime 
configuration should be “attached” to the container. There are many solutions 
for this and most clustering/deployment systems can work with a solution for 
runtime configuration (configmaps, zookeeper, consul etc) and secrets (vault, 
keywhiz, confidant, cerberus).

Talking about git hashes

https://12factor.net/config
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
http://zookeeper.apache.org/
https://www.consul.io/
https://www.vaultproject.io/
https://square.github.io/keywhiz/
https://lyft.github.io/confidant/
http://engineering.nike.com/cerberus/


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 20

ANTI-PATTERN 9

Creating Docker files that do too much

If your Docker image has hardcoded IPs and/or credentials you are definitely doing 
it wrong.

Loading configuration during runtime

I have come across articles who suggest that Dockerfiles should be used as a poor 
man’s CI solution. Here is an actual example of a single Dockerfile.

# Run Sonar analysis
FROM newtmitch/sonar-scanner AS sonar
COPY src src
RUN sonar-scanner
# Build application
FROM node:11 AS build
WORKDIR /usr/src/app
COPY . .
RUN yarn install \
 yarn run lint \
 yarn run build \
 yarn run generate-docs
LABEL stage=build



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 21

# Run unit test
FROM build AS unit-tests
RUN yarn run unit-tests
LABEL stage=unit-tests
# Push docs to S3
FROM containerlabs/aws-sdk AS push-docs
ARG push-docs=false
COPY --from=build docs docs
RUN [[ "$push-docs" == true ]] && aws s3 cp -r docs s3://
my-docs-bucket/
# Build final app
FROM node:11-slim
EXPOSE 8080
WORKDIR /usr/src/app
COPY --from=build /usr/src/app/node_modules node_modules
COPY --from=build /usr/src/app/dist dist
USER node
CMD ["node", "./dist/server/index.js"]

While at first glance this Docker file might look like a good use of multi-stage 
builds, it is essentially a combination of previous anti-patterns.

•   It assumes the presence of a SonarQube server (anti-pattern 2).

•   It has potential side effects as it can push to S3 (anti-pattern 3).

•  It acts both as a development as well as a deployment image (anti- pattern 4).

Docker is not a CI system on its own. Container technology can be used as part of a 
CI/CD pipeline, but this technique is something completely different. Don’t confuse 
commands that need to run in the Docker container with commands that need to 
run in a CI build job.

The author of this Dockerfile advocates that you should use build arguments 
that interact with the labels and switch on/off specific build phases (so you could 
disable sonar for example). But this approach is just adding complexity for the sake 
of complexity.

The way to fix this Dockerfile is to split it into 5 other Dockerfiles. One is used for 
the application deployment and all others are different pipeline steps in your CI/CD 
pipeline. A single Dockerfile should have a single purpose/goal

https://itnext.io/shift-your-ci-scripts-to-docker-build-92453bca9f75


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 22

ANTI-PATTERN 10

Creating Docker files that do too little

Because containers also include their dependencies, they are great for isolating 
library and framework versions per application. Developers are already familiar 
with the issues of trying to install multiple versions of the same tool on their 
workstation. Docker promises to solve this problem by allowing you to describe in 
your Dockerfile exactly what your application needs and nothing more.

But this Docker promise only holds true if you actually employ it. As an operator, I 
should not really care about the programming tool you use in your Docker image. 
I should be able to create a Docker image of a Java application, then a Python one 
and then a NodeJs one, without actually having a development environment for 
each language on my laptop.

A lot of companies however still see Docker as a dumb package format and just 
use it to package a finished artifact/application that was already created outside of 
the container. This anti-pattern is very famous with Java heavy organizations and 
even official documentation seems to promote it.

Here is the suggested Dockerfile from the official Spring Boot Docker guide.

This Dockerfile just packages an existing jar file. How was the Jar file created? 
Nobody knows. It is not described in the Dockerfile. If I am an operator I am forced 
to install all Java development libraries locally just to build this Dockerfile. And if 
you work in an organization that works with multiple programming languages this 
process gets quickly out of hand not only for operators but also for build nodes.

I am using Java as an example here but this anti-pattern is present in other 
situations as well. Dockerfiles that don’t work unless you have first performed an 

FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG JAR_FILE
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./
urandom","-jar","/app.jar"]

https://spring.io/guides/gs/spring-boot-docker/


|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 23

“npm install” locally first are a very common occurrence.

The solution to this anti-pattern is the same for anti-pattern 2 (Dockerfiles that 
are not self-contained). Make sure that your Dockerfiles describe the whole 
process of something. Your operators/SREs will love you even more if you follow 
this approach. In the case of the Java example before the Dockerfile should be 
modified as below: 

FROM openjdk:8-jdk-alpine
COPY pom.xml /tmp/
COPY src /tmp/src/
WORKDIR /tmp/
RUN ./gradlew build
COPY  /tmp/build/app.war /app.jar
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./
urandom","-jar","/app.jar"]

This Dockerfile described exactly how the application is created and can be run 
by anybody on any workstation without the need for local Java installation. You 
can improve this Dockerfile even further with multi-stage builds (exercise for the 
reader).



|  Docker Anti-Patterns 

www.codefresh.io |  © 2019 Codefresh. All rights reserved 24

Summary
A lot of companies have trouble adopting containers because they attempt to 

shoehorn their existing VM practices into containers. It is best to spend some 

time to rethink all the advantages that containers have and understand how you 

can create your process from scratch with that new knowledge.

In this guide, I have presented several bad practices with container usage and also 

the solution to each one.

Attempting to use VM practices on containers. Solution: understand what 
containers are.

Creating Docker files that are not transparent. Solution: write Dockerfiles 
from scratch instead of adopting existing scripts.

Creating Dockerfiles that have side effects. Solution: move side effects to 
your CI/CD solution and keep Dockerfiles side-effect free.

Confusing images used for deployment with those used for development. 

Solution: don’t ship development tools and test frameworks into production 

servers.

Building different images per environment. Solution: build an image only once 

and promote it across various environments

Pulling code from git intro production servers and building images on the fly. 

Solution: use a Docker registry

Promoting git hashes between teams. Solution: promote container images 

between teams

Hardcoding secrets into container images. Solution: build an image only once and 

use runtime configuration injection

Using Docker as CI/CD. Solution: use Docker as a deployment artifact and choose 

a CI/CD solution for CI/CD

Assuming that containers are a dumb packaging method. Solution: Create 

Dockerfiles that compile/package source code on their own from scratch.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Look at your workflows, ask developers (if you are an operator) or operators (if you are a 
developer) and try to find if your company falls into one or more of these bad practices.


