
M A N N I N G

Mauricio Salatino

Compliments of

Conquer DevOps
From Zero to GitOps in a Few Clicks

Thousands of DevOps teams depend on Codefresh to deploy their software

in a safe and scalable manner. You can easily automate your deployments in

minutes using our managed enterprise platform powered by argo. Plus,

Codefresh can integrate with best-of-breed tools to support your software

delivery end to end for even the most complex scenarios.

Visit codefresh.io/free-trial

Start your free hosted Argo CD now and learn what you have been missing!

https://codefresh.io/codefresh-signup/

Continuous Delivery for Kubernetes

Continuous Delivery for Kubernetes

Mauricio Salatino

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

 Manning Publications Co.
 20 Baldwin Road Technical
 PO Box 761
 Shelter Island, NY 11964

Cover designer: Marija Tudor

ISBN: 9781633438590

∞

iviv

contents
 foreword iv

 1 Cloud-Native continuous delivery 1
 1.1 Are you Cloud-Native? 2

 1.2 Continuous Delivery goals 7

 1.3 The need for a “walking skeleton” 10

 1.4 Cloud-Native applications challenges 30

 1.5 Running Cloud-Native applications 42

 2 Delivering Cloud-Native applications 45
 2.1 What does it take to continuously

deliver a Cloud-Native application? 46

 2.2 Service Pipelines 49

 2.3 Environment Pipelines 63

 2.4 Environment Pipelines in Action 72

 2.5 Service + Environment Pipelines summary 81

 2.6 Release strategies in Kubernetes 83

 2.7 Reducing releases risk to improve delivery speed 91

 2.8 Summary 111

v

foreword
Going “cloud-native” is about a lot more than just using Kubernetes. A monolithic
service shoved into a container may function but will leave most of the advantages of
cloud-native architecture on the cutting room floor. The goal is not just to be “cloud-na-
tive” for its own sake. The goal is to realize the benefits! More frequent deployments,
fewer regressions, more reliability, and even a more efficient developer experience are
all possible when teams embrace a cloud-native approach.

Author Mauricio Salatino goes beyond simple tips to explore application architec-
ture and approaches. More often than not, when teams find their Kubernetes applica-
tions misbehaving, they miss one of these critical architectural points. So if you’re on
your way to a GitOps nirvana with Argo CD and Codefresh, this book will help you bring
your applications with you!

—Dan Garfield
Co-Founder and Chief Open
Source Officer, Codefresh
Argo Project and Open GitOps
Maintainer

Save 42% on all Manning products in all formats compliments of Codefresh.

Enter CFRESHCDK42 in the Promotional Code box when you checkout.

Only at manning.com—valid through July 12th 2023.

http://manning.com

1

1Cloud-Native
 continuous delivery

Building and delivering modern Cloud-Native applications is hard. You end up
building highly complex distributed applications that are continuously evolving
on top of a tech stack that is continuously changing. Delivering software has always
been challenging; delivering software efficiently and reliably is still considered a
holy grail by many. In today’s world, how fast you deliver new features to your users/
customers can become a real differentiator from your competition; hence, it is
becoming a priority for companies from all industries to change the way they work,
how they organize teams, and how they architect and deliver software.

This report focuses on applying Continuous Delivery practices to modern
Cloud-Native environments using Kubernetes as the target platform. This report will
also provide links to step-by-step tutorials and aims to be very practical in showing
how you can use different tools with the primary goal of delivering software reliably
and efficiently.

Each of the tools introduced in this report has been chosen to solve specific chal-
lenges that you will face when building Cloud-Native applications. Some of these
tools solve very technical and architectural challenges. Some cover how teams will
improve collaboration. But all the tools presented have a shared goal: to help you to
deliver robust and reliable software to your customers.

This report is divided into two parts, the first part covers the basics around
Cloud-Native applications and their challenges, Continuous Delivery practices, and
Kubernetes as the platform of choice to run our applications. In this first part, we will
be looking at a Walking Skeleton, a demo application that will help us try different
tools and assumptions about how our distributed applications will work and what is
expected of them.

2 Part 1 Cloud-Native continuous delivery

The second part goes over the challenges that we will face when trying to deliver
these applications to different environments going from source to our applications
being deployed for use by our customers/users. In this second part, the focus will be on
figuring out the tools to transform the source code that our developers are creating into
running versions of our applications that can be installed in different environments.

Before we begin, let’s break down the main things we will be looking at in this first
part. We will break down the second part once we come to it.

This first part is divided into the following sections:

1 Are you Cloud-Native?

– What does this mean for Kubernetes?

– Kubernetes? Where? How do we choose one?

2 Continuous Delivery Goals

– Are you doing Continuous Delivery?

3 The need for a Walking Skeleton

– Use case

– Installing the application into a Kubernetes cluster

– Interacting with the application and Kubernetes basics

4 Cloud-Native application challenges

– Downtime is not allowed

– Service’s built-in resiliency

– Dealing with the application state is not trivial

– Data inconsistent data

– Understanding how the application is working

– Application security and identity management

Now, let’s begin with the fundamentals and answer the question: are you
Cloud-Native?

1.1 Are you Cloud-Native?
Let’s get straight to the point. You will see a lot about Kubernetes in this report, but you
need to understand that you can implement Cloud-Native applications without using
Kubernetes. Similarly, you can apply Continuous Delivery practices without Kuberne-
tes. Still, this report aims to deliver a practical experience on a real technology stack
that is widely available today, so the reader can experience the advantages of Continu-
ous Delivery first-hand.

Let’s get the definitions out of the way, Cloud-Native is a very overloaded term, and
while you shouldn’t worry too much about it, it is essential to understand why this report
makes use of concrete tools that run on top of Kubernetes using containers.

A good definition of the term can be found on the VMWare site by Joe Beda
(Co-Founder, Kubernetes and Principal Engineer, VMware) at https://tanzu.vmware.
com/cloud-native:

https://tanzu.vmware.com/cloud-native
https://tanzu.vmware.com/cloud-native

 3Are you Cloud-Native?

“Cloud-Native is structuring teams, culture, and technology to utilize automation and architec-
tures to manage complexity and unlock velocity.”

As you can see, there is much more than the technology associated with the term
Cloud-Native. There is a people and culture angle to it, that pushes us to reevaluate how
we are building software. This report, while covering technology, will make a lot of ref-
erences to practices that can speed up the process of creating and delivering Cloud-Na-
tive applications.

On the technical side, Cloud-Native applications are heavily influenced by the
“12-factor apps” principles (https://12factor.net) which were defined to leverage
cloud-computing infrastructure. These principles were created way before Kubernetes
existed and served to establish recommended practices for building distributed appli-
cations. With these principles, you can separate services to be worked by different teams
using the same assumptions on how these services will work and interact with each
other. These 12 factors are:

¡	I. Codebase
One codebase tracked in revision control, many deploys

¡	II. Dependencies
Explicitly declare and isolate dependencies

¡	III. Config
Store config in the environment

¡	IV. Backing services
Treat backing services as attached resources

¡	V. Build, release, run
Strictly separate build and run stages

¡	VI. Processes
Execute the app as one or more stateless processes

¡	VII. Port binding
Export services via port binding

¡	VIII. Concurrency
Scale out via the process model

¡	IX. Disposability
Maximize robustness with fast startup and graceful shutdown

¡	X. Dev/prod parity
Keep development, staging, and production as similar as possible

¡	XI. Logs
Treat logs as event streams

¡	XII. Admin processes
Run admin/management tasks as one-off processes

By following these principles, you are aiming to manage and reduce the complexity of
building distributed applications, for example, by scoping a smaller and more focused

https://12factor.net
https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

4 Part 1 Cloud-Native continuous delivery

set of functionalities into what is known as a microservice. These principles guide
you to build stateless microservices (VI and VIII) that can be scaled by creating new
instances (replicas) of the service to handle more load.

By having smaller microservices, you end up having more services for your appli-
cations. This forces you to have a clear scope for each microservice, where the source
code is going to be stored and versioned (I), and its dependencies (II and IV). Having
more moving pieces (microservices), you will need to rely on automation to build, test,
and deploy (V) each service, so having a clear strategy becomes a must from day one.
Now you need to manage an entire fleet of running services, instead of just one big
ship (monolith), which requires you to have visibility on what is going on (XI) and plan
accordingly for cases when things go wrong (XII). Finally, to catch production issues
early (X), it is highly recommended you work and regularly perform testing on environ-
ments that are as close as possible to your production environment.

The term Cloud-Native is also strongly related to container technologies (such as
Docker) because containers by design follows best practices from the “12-factor apps”
principles as they were designed with Cloud-Native applications and cloud infrastruc-
tures in mind. Once again, you can implement Cloud-Native patterns without using
containers. Still, for the sake of simplicity, in this report, Cloud-Native services, “12-fac-
tor apps”, and microservices are all going to be packaged as containers, and these terms
will be used as synonyms.

If you are following the “12-factor apps” principles, you and your teams are going to
be building a set of services that have a different lifecycle and can evolve independently.
No matter the size of your team, you will need to organize people and tools around
these services (figure 1.1).

Figure 1.1 Teams, services, and containers composing applications for end-users.

When you have multiple teams working on different services, you will end up with tens
or even hundreds of services. When you have three or four containers and a set of com-
puters to run them, it is possible to decide where these services will run manually, but

 5Are you Cloud-Native?

when the amount of services grows, and your data center needs to scale, you will need
to automate this job. That is precisely the job of a container orchestrator, which will
decide for you based on the size and utilization of your cluster (machines in your data
center) where your services will run.

The industry already chose Kubernetes to become the de facto standard for con-
tainer orchestration. You will find a Kubernetes managed service in every major cloud
provider and on-prem service offered by companies such as Red Hat, VMWare, and
others.

Kubernetes provides a set of abstractions to deal with a group of computing resources
(usually referred to as a cluster; imagine a data center) as a single computer. Dealing
with a single computer simplifies the operations because you can rely on Kubernetes to
make the right placements of your workloads based on the state of the cluster. Develop-
ers can focus on deploying applications, and Kubernetes will take the burden of placing
them where it is more appropriate.

Kubernetes provides a developer and operations-friendly declarative REST API to
interact with these abstractions (figure 1.2). Developers and Operations can interact
with different Kubernetes Clusters by using a CLI (command-line interface) called
kubectl or directly calling the REST APIs exposed by each cluster.

Figure 1.2 Kubernetes lets you focus on running your services.

Kubernetes is in charge of deciding where your containers will run (in which specific
machine), based on the cluster utilization and other characteristics that you can tune.
Most of the time, as a developer, you are only interested in having your applications
running, not where they run.

6 Part 1 Cloud-Native continuous delivery

Both Kubernetes in Action, Second Edition and Core Kubernetes are highly recommended
books if you are interested in learning how to work with Kubernetes and how Kuberne-
tes works internally.

For the sake of space, and in the name of focus, this report is fully centered around
the idea of using Kubernetes as our target platform where our application will be
deployed. Before moving forward, I wanted to make sure that it is clear that someone
will need to run and manage Kubernetes Clusters. Normally, this is done by an opera-
tions team which is in charge of dealing with the hardware or virtual machines that will
compose a cluster. This operations team can be a team inside your company, or you can
use a managed service, which basically means that another company will charge you for
running and maintaining those clusters.

As a developer you have several options:

¡	Run a Kubernetes Cluster locally in your environment: This is a great option to get
started if you want to start learning and gaining experience with the Kubernetes
APIs and the basic concepts. But it has several limitations, such as your local envi-
ronment CPUs and memory, that you can allocate for the cluster to run. If you
aim to run large applications, this is probably not going to be enough.

¡	Use a cloud provider-managed Kubernetes service: The easiest and quickest way to
access a real Kubernetes Cluster is by using a cloud provider such as Google,
Azure, AWS, Linode, Digital Ocean, etc. All these providers will give you a free
trial to get started, but most of them require you to enter a credit card. You can
find a community-maintained list of free Kubernetes Trials at https://github.
com/learnk8s/free-kubernetes. If your company is already using any of these
cloud providers, requesting access to them might be easier. The big downside of
this approach is that someone will need to pay for those services.

¡	Request a Kubernetes cluster to your company operation team: If your company is already
working with Kubernetes, they might have already an operations team that can
provision new clusters on-demand. In most of the cases, you will need to justify
why your team needs a Kubernetes cluster because the operations team will need
to allocate hardware for that cluster to run.

No matter which option you choose, all the examples covered in this report should
work for all the options listed.

Be aware that no matter if you choose Kubernetes, 12-factor principles, and contain-
ers you are not guaranteed to succeed, you need to use them wisely to rip the benefits
that these tools were designed to provide. Every decision along the way introduces its
own opinions, challenges, and restrictions that you will need to follow to make the best
out of your stack of choice. By choosing Kubernetes you are buying into a set of best
practices, de-facto standards, and very non-opinionated solutions that enable you with
very flexible tools to implement a wide range of scenarios. For these reasons in the fol-
lowing sections we will evaluate the (Continuous Delivery) practices that we need to rely
on to navigate the technical challenges that we will face in our Cloud-Native journey.

https://www.manning.com/books/kubernetes-in-action-second-edition
https://www.manning.com/books/core-kubernetes
https://github.com/learnk8s/free-kubernetes
https://github.com/learnk8s/free-kubernetes

 7Continuous Delivery goals

Let’s start by looking at the Continuous Delivery Goals to then go and get hands on by
installing and interacting with a demo application that we can use to test our assump-
tions and tools.

1.2 Continuous Delivery goals
Delivering valuable software to your customers/users in an efficient way should be your
main goal. While building Cloud-Native applications, these become challenging as you
are not dealing with a single application, you are now dealing with complex distributed
applications and multiple teams delivering features at different paces.

For the remainder of the report, the following goal of Continuous Delivery is going
to be used, to guide the selection of different projects and tools for your teams to use:

“Goal: Deliver useful, working software to users as quickly as possible.

Focus on Reducing cycle time (The time from deciding to make a change to having it
available to users.)”

This goal definition comes from the Continuous Delivery book1 written by Jez Hum-
ble and David Farley. The book, on purpose, doesn’t go deep into any technologies
besides naming them, and because it was written more than 10 years ago, the cloud
and Kubernetes didn’t exist in the way that exists today.

There are some significant areas covered by Humble and Farley’s book that you will
read about here, such as:

¡	Deployment pipeline: All the steps needed to create and publish the software arti-
facts for our application’s services.

¡	Environment Management: How to create and manage different environments to
develop, test, and host the application for our customers/users.

¡	Release Management: The process to verify and validate new releases for your
services.

¡	Configuration Management: How to manage configuration changes across environ-
ments in an efficient and secure way.

This report aims to be a practical guide where you can experience the concepts
described by Humble and Farley in their book first-hand, with simple tools and a work-
ing example that you can modify to test different aspects of Continuous Delivery.

To benefit (and have some return on investments) from adopting Kubernetes, re-
architecting your applications and running your workloads is not enough. You can only
fully leverage Kubernetes design principles if your organization delivers more and bet-
ter software to your users faster.

In such a way, the Cloud-Native Continuous Delivery goal can be stated as follows:

8 Part 1 Cloud-Native continuous delivery

“Deliver useful, working software to users as quickly as possible by organizing teams to
build and deploy in an automated way Cloud-Native applications that run in cloud-
agnostic setup.”

This goal implies multiple teams working on different parts of these Cloud-Native
applications that can be deployed to different cloud providers to avoid vendor lock-in.
It also means the fact that Cloud-Native applications are more complex than old mono-
liths, but this inherent complexity also unlocks velocity, scalability, and resilience if
managed correctly.

At this point, you might be wondering: Am I already doing Continuous Delivery?

1.2.1 Are you doing Continuous Delivery already?

Continuous Delivery is all about speeding up the feedback loop from the moment you
release something to your users until the team can act on that feedback and implement
the change or new feature requested. To produce efficient and reliable high-quality
software, you need to automate a big part of this process.

I often hear people stating that they are already doing Continuous Delivery; hence,
this section gives a quick overview of what the remainder of the report will be covering
so you can map your current situation with some of these points:

¡	Every change needs to trigger the feedback loop: There are four main things that you
need to monitor for changes and verify that these changes are not breaking the
application:

– Code: If you change the source code that will be built and run, you need to trig-
ger the build, test, and release process for every change.

– Configuration: If something in the configuration changes, you need to re-test
and make sure that these changes broke nothing.

– Environment: If the environment where you run the application changes, you
need to re-test and verify that the application is still behaving as expected.
Here is where you control and monitor which version of the operating system
you are using, which version of Kubernetes is being used in every node of your
cluster, etc.

– Data structures: If a data structure changes in your application, you need to
verify that the application keeps working as expected, because data represents
a very valuable asset, every change needs to be correctly verified. This also
involves a process for deciding how backward-compatible the change is and
how the migration between the old and new data structure will work.

¡	The feedback loop needs to be fast: The faster the feedback loop is, the quicker you
can act on it, and the smaller the changes are (figure 1.3). To make the feedback
loop faster, most of the verifications need to be automated by applying a Con-
tinuous Integration approach. Usually, you will find the following kinds of tests
required to verify these changes:

 9Continuous Delivery goals

– Unit Tests: At each project/service level, these tests can run fast (under 10 sec-
onds) and verify that the internal logic of the services works. Usually, you avoid
contacting databases or external services here, to prevent long-running tests.
A developer should run these tests before pushing any changes.

– Integration/Component Tests: These tests take longer because they interact with
other components. But you need to verify that these interactions are still
working. For these tests, components can be mocked, and this report covers
“Consumer Contract Testing” to verify that new versions of the services are not
breaking the application when their interfaces (contracts) change.

– Acceptance Tests: Verify that the application is doing what it is supposed to do
from a business perspective. Usually, this is verified at the service level, instead
of at the user interface level, but there are different techniques to cover dif-
ferent angles. These tests are executed on top of the entire application. This
requires a whole environment to be created and configured with the version
of the service that includes the new change, and it can take more time to run.

– Manual Testing: This is performed by a team that is going to test the applica-
tion in an environment similar to production. Ideally, these testers should be
testing what the users are going to get. These tests are prolonged, because
they require people to go over the application.

¡	Everything needs to be measured: To make sure that we are going in the right direc-
tion, and you keep delivering high-quality software to your users, you need to
track how much time and resources this feedback loop is taking you from start
to finish. Here are some key measurements that will help you to understand how
good you are. Based on the DORA report about the State of DevOps 2021 you
can measure:

– How frequent your code deployments are: How often are you deploying new ver-
sions to your production environment?

– Lead time from committing changes to deploying your service: How much time does it
take you from committing a change to version control to having those changes
deployed in your production environment?

– Time to recover from incidents: How much time does it take you to fix a service (or
a set of services) that are misbehaving between when the issue is reported until
the system is again in a stable state?

– Change failure rate: How often do you deploy new versions that cause problems
in the production environment?

A typical feedback loop looks like figure 1.3, where after a change in Configuration,
Code, Data, or the Environment a build and test step is triggered followed by a new
deployment including the new changes. Once we have the changes applied, we will
take some measurements that will let us know if the new changes are performing as
expected or if we need to roll back to the previous working version. If we are happy with
the measurements, we can mark the release as done!

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

10 Part 1 Cloud-Native continuous delivery

Figure 1.3 Fast feedback loops help you to accelerate your deliveries.

There is a high chance that you are doing some of these things already, but unless you
are measuring, it becomes impossible to assert whether your changes are useful to your
users or not.

The main objective of this report is to show how Continuous Delivery can be achieved
in a Cloud-Native environment. This helps you to deal with the complex nature of dis-
tributed teams working on distributed applications. For this exact same reason, an
example is needed, and by example, I don’t mean a typical “hello world” for each tech-
nology that I will mention in the following sections.

In order to be convinced that continuous delivery can be achieved for your com-
pany or scenario, you need to see an example that you can map almost one-to-one with
your daily challenges. The following section introduces an example that will be used
throughout this report. To highlight some tools and frameworks, we need more than
a simple example; hence, we use the term “walking skeleton” which represents a fully
functional application that contains enough components and functionality to work
end-to-end. A “walking skeleton” is supposed to highlight the defined architecture and
how components interact with each other. This “walking skeleton” pushes you to define
which frameworks, target platforms, and tools are you going to use to deliver your soft-
ware. The following chapters will deep dive into different characteristics of the walking
skeleton, which was created in an open-source way, for you to run in your own environ-
ment and use as a playground for testing new technologies before applying them to
your own projects.

1.3 The need for a “walking skeleton”
In the Kubernetes ecosystem, it is common to need at least to integrate 10 or more
projects or frameworks in order to deliver a simple PoC (proof of concept). A PoC
explains how you build these projects into containers that can run inside Kubernetes
to how to route traffic to the REST endpoints provided in each of these containers. If
you want to experiment with new projects to see if they fit into your own ecosystem, you
end up building a PoC to validate your understanding of how this shiny new project
works and how it is going to save your and your teams’ time.

For this report, I have created a simple “walking skeleton”, which is a Cloud-Na-
tive application that goes beyond being a simple PoC and allows you to explore how

 11The need for a “walking skeleton”

different architectural patterns can be applied and how different tools and frame-
works can be integrated, without the need to change your own projects for the sake of
experimentation.

The main purpose of this walking skeleton is to highlight how to solve very specific
challenges from the architectural point of view and from the delivery practices angle.
You should be able to map how these challenges are solved in the sample Cloud-Native
application to your specific domain. Challenges are not always going to be the same,
but I hope to highlight the principles behind each proposed solution and the approach
taken to guide your own decisions.

With this walking skeleton, you can also figure out what is the minimum viable prod-
uct that you need and deploy it quickly to a production environment where you can
improve from there. By taking the walking skeleton all the way to a production environ-
ment, you can get valuable insights into what you will need for other services and from
an infrastructure perspective. It can also help your teams to understand what it takes to
work with these projects and how and where things can go wrong.

The technology stack used to build the walking skeleton is not important in my opin-
ion. It is more important to understand how the pieces fit together and what tools and
practices can be used to enable each team behind a service (or a set of services) to
evolve in a safe and efficient way.

1.3.1 Building a conference platform

During this report, you will be working with a conference platform application. This
conference platform can be deployed in a different environment to serve different
conference events when needed. This platform relies on containers, Kubernetes,
and tools that will work in any major Cloud-Providers as well as on-prem Kubernetes
installations.

This is what the application’s main page looks like (figure 1.4):

Figure 1.4 Conference platform main site.

12 Part 1 Cloud-Native continuous delivery

The conference application lists all the approved submissions on the Agenda page.
The main page will also allow potential speakers to submit proposals in the Proposal
section while the “Call for Proposals” window is still open.

When we start the application for the first time, there are no confirmed talks in the
agenda section (figure 1.5).

Figure 1.5 Conference Agenda with no confirmed sessions.

There is also a Back Office section for the organizers to review proposals and do admin
tasks while organizing the conference (figure 1.6).

Figure 1.6 Conference platform back office page.

This application is composed of a set of services that have different responsibilities.
Figure 1.7 shows the main components of the application that you control; in other
words, the services that you can change and that you are in charge of delivering.

 13The need for a “walking skeleton”

These services functionally compose the application, and here is a brief description of
each service:

¡	Frontend: This service serves as the main entry point for your users to access the
application. For this reason, the service hosts the HTML, JavaScript, and CSS files
that will be downloaded by the client’s browser interacting with the application.

¡	Agenda service: This service deals with listing all the talks that were approved for
the conference. This service needs to be highly available during the conference
dates, because the attendees will be hitting this service several times during the
day to move between sessions.

¡	Email service: This service is just a facade exposing REST endpoints to abstract an
SMPT email service that needs to be configured in the infrastructure where the
application is running.

¡	Call for Proposals (C4P): This service contains the logic to deal with “Call for pro-
posals” use case (C4P for short) when the conference is being organized. As you
will see in the following diagram, the C4P service calls both the Agenda and the
Email services, hence these two services are considered “downstream” services
from the C4P service perspective (figure 1.8).

From the end-user perspective, we are coordinating the interactions of two different
Personas, the Potential Speaker and the Conference Organizer. The sequence of inter-
actions between these two personas is explained in figure 1.8, but to summarize it first
the Potential Speaker uses the website to submit a new proposal for a talk. The organiz-
ers are in charge of reviewing all the incoming proposals on the Conference Platform
back office page. If a proposal gets approved the talk is automatically added to the con-
ference Agenda section. No matter the decision an email is sent notifying the Potential
Speaker of the approval or rejection of his/her proposal.

Figure 1.7 Conference platform services.

14 Part 1 Cloud-Native continuous delivery

It is quite normal in Cloud-Native architectures to expose a single entry point for
users to access the application. This is usually achieved using an API Gateway, which
is in charge of routing requests to the backend services that are not exposed outside
the cluster. The Frontend service is acting as an API Gateway, because it is accepting all
the requests from the client side and routing them to the different backend services as
needed.

Figure 1.8 Call for Proposals use case.

This simple application implements a set of well-defined use cases that are vital for the
events to take place such as:

¡	Call for Proposals: Potential speakers submit proposals that need to be validated
by the conference organizers. If approved, the proposals are published in the
conference agenda.

¡	Attendee Registration: Attendees need to buy a ticket in order to attend the
conference.

¡	Event Agenda (schedule): Host the approved proposals, times, and descriptions.

¡	Communications: Sending organizers, attendees, and sponsors emails.

While looking at how these use cases are implemented, you need to consider also how
to coordinate across teams when new use cases will be implemented or when changes
need to be introduced. For improving collaboration, you need visibility, and you need
to understand how the platform is working. The last few chapters of this report goes
into integrating tools for monitoring, visualizing, and orchestrating your services to
understand and collect business metrics from your applications.

You also need to take into consideration the operation side of this Cloud-Native
application. You can imagine that there will be a period when the application will open
the Call for Proposals request for potential speakers to submit proposals, then closer to
the conference date the application will open the attendee registration page, etc.

 15The need for a “walking skeleton”

In section 1.2.3 when you deploy the application to a Kubernetes cluster, I will
encourage you to inspect how these services are configured to work, how the data is
flowing between the different services, and how to scale the services.

By playing around with a fictional application, you are free to change each service
internals, use different tools and compare results, or even have different versions of
each service to try in parallel. Each service provides all the resources needed for you to
deploy these services to your own environment.

By having this example application up and running, you will be able to understand
and experience with a concrete example of how to measure your Continuous Delivery
practices such as:

¡	Every change needs to trigger the feedback loop: What kind of setup do you need to have
in place to trigger these feedback loops? How do you reconcile different service
feedback loops, and how do you aggregate these changes when they happen?
Part 2 of the report covers how to define and implement an end-to-end deploy-
ment pipeline.

¡	The feedback loop needs to be fast: Where do you test? What do you test? And how
do you stop promoting artifacts when tests go wrong? Part 2 of the report covers
tools like Argo CD which will monitor our environments to make sure that our
services are up, but we need to have a clear strategy on how to process issues when
we find them.

¡	Everything needs to be measured: What do you measure? When do you measure?
And how do you make sure that new changes are not taking your application in
the wrong direction? Shifting-left observability and monitoring is something that
can help us to have the right data to remediate when things are not going as we
expected. Collecting the right measurements is key to understanding if we are
improving or not.

Let’s go ahead and get this application up and running on a Kubernetes Cluster. In
my experience, the only way to fully understand how to optimize our development and
delivery practices is by actually having something running and then looking at the steps
to start the optimizations and automation whenever possible.

1.3.2 Installing Kubernetes KinD locally

There are several options to create Local Kubernetes Clusters for development. This
report has chosen KinD because it supports different platforms and has ease of cus-
tomization to run your clusters with minimum dependencies, because KinD doesn’t
require you to download a virtual machine.

For practical reasons, having access to a local Kubernetes environment can help you
to get started. It is essential to understand that most of the steps are not tied to Kuber-
netes KinD in any way, meaning that you can run the same commands against a remote
Kubernetes cluster (on-prem or in a cloud provider). If you have access to a full-fledged
Kubernetes cluster, I encourage you to use that one instead, and you can skip the follow-
ing section on KinD and move straight to Installing the walking skeleton using Helm.

For the examples in this section to work you need to have installed:

16 Part 1 Cloud-Native continuous delivery

¡	Docker, follow the documentation provided on their website to install: https://
docs.docker.com/get-docker/.

¡	Kubernetes KinD (Kubernetes in Docker), follow the documentation provided
on their website to install KinD on your laptop: https://kind.sigs.k8s.io/docs/
user/quick-start/#installation.

¡	kubectl, follow the documentation provided in the official Kubernetes site to
install kubectl: https://kubernetes.io/docs/tasks/tools/.

¡	Helm, you can find the instructions to install Helm on their website: https://
helm.sh/docs/intro/install/.

Once you have everything installed, we can start working with KinD, which is a project
that enables you to run local Kubernetes clusters, using Docker container “nodes”.

In this section, you will be creating a local Kubernetes cluster on your laptop/pc and
set it up so you can access the applications running inside it.

By using KinD, you can quickly provision a Kubernetes cluster for running and test-
ing your applications; hence, it makes a lot of sense when working with applications
composed of several services to use a tool like this to run integration tests as part of your
Continuous Integration pipelines.

Once you have kind installed in your environment, you can create clusters by run-
ning a single line in the terminal.

The cluster you are going to create will be called “dev”, and will have four nodes,
three workers, and a master node (control plane), as seen in figure 1.9. We want to be
able to see in which nodes our application services are placed inside our Kubernetes
cluster.

Figure 1.9 Kubernetes cluster topology.

KinD will simulate a real cluster conformed by a set of machines or virtual machines.
In this case, each node will be a Docker container. When you deploy an application on
top of these nodes, Kubernetes will decide where the containers for the application
will run based on the overall cluster utilization. Kubernetes will also deal with failures

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

 17The need for a “walking skeleton”

of these nodes to minimize your application’s downtimes. Because you are running a
local Kubernetes cluster, this has limitations, such as your laptop/pc’s available CPUs
and memory. In real-life clusters, each of these nodes is a different physical or virtual
machine that can run in different locations to maximize resilience.

You can create the cluster by running the following command in the terminal:

cat <<EOF | kind create cluster --name dev --config=-
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
 kubeadmConfigPatches:
 - |
 kind: InitConfiguration
 nodeRegistration:
 kubeletExtraArgs:
 node-labels: “ingress-ready=true”
 extraPortMappings:
 - containerPort: 80
 hostPort: 80
 protocol: TCP
 - containerPort: 443
 hostPort: 443
 protocol: TCP
- role: worker
- role: worker
- role: worker
EOF

You can copy the previous command and the following commands from GitHub:
https://github.com/salaboy/from-monolith-to-k8s/blob/main/kind/README.md.

Notice that besides creating a cluster, you will also need to set up an Ingress Control-
ler (hence the labels in the control plane node: node-labels: “ingress-ready=true”
and some port-mappings to route traffic from your laptop to the services running inside
the cluster.

You should see something similar to figure 1.10 after you run the previous command.

Creating cluster “dev” ...
 Ensuring node image (kindest/node:v1.23.4)
 Preparing nodes
 Writing configuration
 Starting control-plane
 Installing CNI
 Installing StorageClass
 Joining worker nodes
Set kubectl context to “kind-dev”
You can now use your cluster with:

kubectl cluster-info --context kind-dev

Not sure what to do next? Check out https://kind.sigs.k8s.io/docs/user/
quick-start/

Figure 1.10 KinD cluster is created.

https://github.com/salaboy/from-monolith-to-k8s/blob/main/kind/README.md

18 Part 1 Cloud-Native continuous delivery

To connect your kubectl CLI tool with this newly created, you might need to run:

kubectl cluster-info --context kind-dev

You should see something similar to figure 1.11.

Kubernetes control plane is running at https://127.0.0.1:50084
CoreDNS is running at https://127.0.0.1:50084/api/v1/namespaces/kube-system/services/
kube-dns:dns/proxy

To further debug and diagnose cluster problems, use ‘kubectl cluster-info dump’.

Figure 1.11 Setting the context for kubectl.

Once you have connected with the cluster, you can start interacting with it. For exam-
ple, you can check the cluster nodes by running:

kubectl get nodes -owide

The output of running that command should look similar to figure 1.12.

Figure 1.12 Listing all Kubernetes nodes.

As you can see, your Kubernetes cluster is composed of four nodes, and one of those is
the control plane. Notice that you are using the “-owide” flag to get more information
about your nodes.

Finally, you will use NGINX Ingress Controller (more detailed instructions can be
found here: (https://kind.sigs.k8s.io/docs/user/ingress/) to route traffic from out-
side the Kubernetes cluster to the applications that are running inside the cluster.
There are a number of Ingress Controller implementations that you can install to do
this routing, but NGINX Ingress Controller is widely adopted and the most popular
option. For a non-extensive list of available options, you can check the Kubernetes web-
site: https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/.
To install the NGINX Ingress Controller, you need to run the following command:

kubectl apply -f
https://raw.githubusercontent.com/kubernetes/ingress-nginx/master/deploy/

static/provider/kind/deploy.yaml

This command creates a set of resources inside our Kubernetes cluster required to run
the NGINX Ingress Controller in a new Kubernetes Namespace called “ingress-nginx”
(figure 1.13):

https://kind.sigs.k8s.io/docs/user/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

 19The need for a “walking skeleton”

namespace/ingress-nginx created
serviceaccount/ingress-nginx created
serviceaccount/ingress-nginx-admission created
role.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
configmap/ingress-nginx-controller created
service/ingress-nginx-controller created
service/ingress-nginx-controller-admission created
deployment.apps/ingress-nginx-controller created
job.batch/ingress-nginx-admission-create created
job.batch/ingress-nginx-admission-patch created
ingressclass.networking.k8s.io/nginx created
validatingwebhookconfiguration.admissionregistration.k8s.io/ingress-nginx-

admission created

Figure 1.13 Installing the NGINX Ingress Controller.

Figure 1.14 shows all the resources that were created inside the cluster to install our
Ingress Controller.

As a side note, you can check where this Ingress Controller is running in your cluster
by running:

kubectl get pods -n ingress-nginx -owide

The output of this command should look like figure 1.14.

NAME READY STATUS RESTARTS AGE IP NODE

ingress-nginx-admission-create-dwrgc 0/1 Completed 0 17h 10.244.1.2 dev-worker

ingress-nginx-admission-patch-mm5jg 0/1 Completed 2 17h 10.244.2.2 dev-worker3

ingress-nginx-controller-8695d45448-p6v2w 1/1 Running 0 17h 10.244.0.5 dev-control-plane

Figure 1.14 Ingress Controller running in the control-plane node.

Here it can be seen that the Ingress Controller pod is running in the control plane
node.

There you have it; your Cluster is up and running, and your kubectl command-line
interface is configured to work against your new cluster! Now you are ready to install
applications in your newly created cluster.

1.3.3 Installing the walking skeleton

To run containerized applications on top of Kubernetes, you will need to have each
of the services packaged as a container image, plus you will need to define how these
containers will be configured to run in your Kubernetes cluster. To do so, Kubernetes

20 Part 1 Cloud-Native continuous delivery

allows you to define different kinds of resources (using YAML format) to configure
how your containers will run and communicate with each other. The most common
kinds of resources are:

¡	Deployments: Declaratively define how many replicas of your container need to be
up for your application to work correctly. Deployments also allow us to choose
which container (or containers) we want to run and how these containers need
to be configured (using environment variables).

¡	Services: Declaratively define a high-level abstraction to route traffic to the con-
tainers created by your deployments. It also acts as a load-balancer between the
replicas inside your deployments. Services enable other services and applications
inside the cluster to use the service name instead of the physical IP address of the
containers to communicate, providing what is known as service discovery.

¡	Ingress: Declaratively define a route-to-route traffic from outside the cluster to
services inside the cluster. By using Ingress definitions, we can only expose the
services that are required by client applications that run outside the cluster.

¡	ConfigMap/Secrets: Declaratively define and store configuration objects to set up
our services instances. Secrets are considered sensitive information that should
have protected access.

If you have large applications with tens of services, these YAML files are going to be
complex and hard to manage. Keeping track of the changes and deploying applications
by applying these files using kubectl becomes a complex job. It is beyond the scope of
this report to cover an in-detail view of these resources, as there are other resources
available. In this report, we will concentrate on how to deal with these resources for
large applications and the tools that can help us with that task. The following section
provides an overview about the tools that you can use to package and install compo-
nents into your Kubernetes cluster.

Packaging and installing kubernetes aPPlications

There are different tools to package and manage your Kubernetes applications. Most
of the time we can separate these tools into two main categories: templating engines
and package managers. For real life scenarios, you will probably need both kinds of
tools to get things done.

Let’s talk a bit about these two kinds of tools. Why would you need a templating
engine? What kind of packages do you want to manage?

A templating engine (figure 1.15) allows you to reuse the same resource definitions
into different environments where applications might require slightly different param-
eters. The textbook example for the need of templating your resources are database
URLs. If your service needs to connect to different database instances in different envi-
ronments, for example, to the testing database in the testing environment and to the
production database in the production environment, you want to avoid having to main-
tain two copies of the same YAML file but with different URLs. Figure 1.15 shows how

 21The need for a “walking skeleton”

you can now add variables into the YAML files and the engine then will find and replace
these variables with different values depending where you want to use the final (ren-
dered) resource.

Figure 1.15 Templating engines render YAML resources by replacing variables.

Using a templating engine can save you a lot of time maintaining different copies of
the same file; when files start to pile up maintaining them becomes a full-time job.
There are several tools in the community to deal with templating Kubernetes files.
Some tools just deal with YAML files and other tools are more targeted to Kubernetes
resources specifically. Some projects that you should check out are:

¡	Kustomize: https://kustomize.io/

¡	Carvel YTT: https://carvel.dev/ytt/

¡	Helm Templates: https://helm.sh/docs/chart_best_practices/templates/#helm

Now, what do you do with all these files? It is quite a natural urge to try to organize
these files in logical packages. If you are building an application that is composed of
different services, it might make sense to group all the resources related to a Service
inside the same directory or even in the same repository that contains the source code
for that service. You also want to make sure that you can distribute these files to the
teams deploying these services to different environments, and you quickly realize that
you need to version these files in some way. This versioning might be related to the
version of your service itself or with a high-level logical aggregation that makes sense
for your application. When we talk about grouping, versioning, and distributing these
resources we are basically describing the responsibility of a package manager. Devel-
opers and Operations teams are already used to working with package managers no
matter the technology stack that they are using—Maven/Gradle for Java, NPM for
NodeJS, APT-GET for Linux/Debian/Ubuntu packages, and more recently containers
and container registries for Cloud-Native applications.

So, what does a package manager for YAML files look like? What are the Package
Manager’s main responsibilities?

https://kustomize.io/
https://carvel.dev/ytt/

22 Part 1 Cloud-Native continuous delivery

As a user, a package manager gives me a way to browse available packages and their
metadata so I can decide which package I want to install. Once I’ve decided which pack-
age I want to use, I should be able to download it and then install it. Once the package is
installed, I would expect, as a user, to be able to upgrade to a newer version of the pack-
age if it becomes available. Upgrading/updating a package is something that usually
requires manual intervention, meaning that as a user I would implicitly tell the package
manager to upgrade the installation of a certain package to a newer (or latest) version.

From a package provider’s point of view, a package manager should offer a conven-
tion and structure to create packages and a tool to package the files that you want to
distribute. Package managers deal with versions and dependencies, meaning that if
you create a package you will need to associate a version number to it. Some package
managers use the semver (semantic versioning) approach which uses three numbers
to describe the package maturity (1.0.1 where these numbers represent the major,
minor, and patch versions). It is not mandatory for a package manager to provide a
centralized package repository, but they often do. This package repository is in charge
of hosting packages for users to consume. Central repositories are really useful as they
provide access to developers with thousands of packages ready to be used, some exam-
ples of these central repositories are Maven Central, NPM, Docker Hub, and GitHub
Container Registry, etc. These repositories are in charge of indexing the package’s
metadata (which can include versions, labels, dependencies, and short descriptions)
to make them searchable by users. These repositories also deal with access control to
have public and private packages, but at the end of the day, the main responsibility of
the package repository is to allow package producers to upload packages and package
consumers to download packages from it (figure 1.16).

Figure 1.16 Package Managers’ responsibilities: build, package, and distribute.

When we talk about Kubernetes, Helm is a very popular tool that provides both a pack-
age manager and a templating engine. But there are others worth looking into such as:

¡	Imgpkg (https://carvel.dev/imgpkg/), which uses container registries to store
the packages.

¡	Kapp (https://carvel.dev/kapp/), which provides higher-level abstractions to
group resources as applications.

https://carvel.dev/imgpkg/
https://carvel.dev/kapp/

 23The need for a “walking skeleton”

¡	And tools like Terraform, Pulumi, and Ansible allow you to create packages
closer to the infrastructure.

In the following section, we will look into how Helm (http://helm.sh) can help us to
package, distribute and manage our Kubernetes resources.

installing the walking skeleton using helm

In this section, we are going to use Helm, a package manager for Kubernetes applica-
tions, to install our walking skeleton into our freshly created Kubernetes cluster. As we
installed an Ingress Controller, we should be able to access the application from our
laptop’s favorite browser.

helm basics

Helm was created to package all YAML files from a service or an entire application into
packages called charts.

To use Helm, you create one of these charts (packages). A Helm chart is defined by
a set of files organized using a very specific directory structure. You can version these
charts to deal with configuration changes and new versions of your application/service.

As you can see in the following figure, a Chart.yaml file is required to define the
chart metadata such as name and version. The templates directory contains all of our
YAML files required to deploy and configure our service/application. As the name of
the directory indicates, the files inside the templates directory can include parame-
terizable values that you can replace when you are installing the chart into a specific
environment. Finally, the values.yaml file contains the default values for the parameter-
izable placeholders included in the templates. When installing a chart, you can provide
your own values.yaml file to override the defaults (figure 1.17).

Figure 1.17 A simple Helm chart.

Helm also provides a command-line tool (helm) to package, search and install these
packages. Helm charts can be stored in “Helm Repositories” and distributed for other
users to use. The most commonly used helm command that you need to learn how to

http://helm.sh

24 Part 1 Cloud-Native continuous delivery

use is helm install <release name> <chart name>. This will install the chart into
a Kubernetes Cluster. In which cluster, you might be wondering? Helm uses the same
configuration used by kubectl to interact with the Kubernetes APIs, hence if you can
connect with kubectl to your cluster Helm will be able to install charts in that cluster.

You can check out each of the files for this example chart here: https://github.com/
salaboy/helm-chart-example. The README.md file also includes how to run the most
common operations to package and install the chart in your own Kubernetes cluster.

When you install a chart into a Kubernetes, Helm will create a release that we can
upgrade at any time if a new version of the chart is available. Helm will keep track of
these releases, allowing us to roll back to previous releases if something goes wrong with
a newer version of your application.

To install Helm charts (packages/applications), you can add new repositories in the
same location as where your applications are stored. For Java developers, these reposi-
tories could be Maven Central, Nexus, or Artifactory.

helm repo add fmtok8s https://salaboy.github.io/helm/
helm repo update

You should see the output shown on figure 1.18.

salaboy> helm repo add fmtok8s https://salaboy.github.io/helm/
“fmtok8s” has been added to your repositories
salaboy> helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the “fmtok8s” chart repository
Update Complete. Happy Helming!

Figure 1.18 Adding a custom Helm repository.

The previous two lines added a new repository to your Helm installation called fmtok8s;
the second one fetched a file describing all the available packages and their versions
for each repo that you have registered. Now that you have installed a new repository,
you don’t need to install the chart from the chart source code, and you can use the
published version in the https://salaboy.github.io/helm/ repository. Notice that
Helm chart repositories can be created inside GitHub for small setups the same way I
am doing it in the following repository: https://github.com/salaboy/helm. Check the
repository README.md for more details about how this works.

Before jumping into installing our walking skeleton, it is also important to know
that Helm also provides dependency management between these packages, meaning
that you can define that a chart depends on one or more charts and that Helm will
download and install these dependent charts when you install your (parent) chart. This
allows us to install multiple services and other components at the same time without the
need to package all the YAML files together. You can define dependencies by adding a
section to the Chart.yaml file, for example:

https://github.com/salaboy/helm-chart-example
https://github.com/salaboy/helm-chart-example
https://salaboy.github.io/helm/
https://salaboy.github.io/helm/
https://github.com/salaboy/helm

 25The need for a “walking skeleton”

dependencies:
- name: postgresql
 repository: https://charts.bitnami.com/bitnami
 version: 10.8.0

Now, let’s install our walking skeleton.

installing the conference Platform with a single command

Now that your Helm installation fetched all the available packages from the fmtok8s
chart repository, you are ready to install the Conference Platform application, which
was introduced in earlier in this section. This Conference Platform allows conference
organizers to receive proposals from potential speakers, evaluate these proposals, and
keep an updated agenda with the approved submissions for the event. We will use this
application throughout the report to exemplify the challenges that you will face while
building real-life applications. This application was built as a walking skeleton, which
means it is not a complete application, but it has all the pieces required for some use
cases to work, and these pieces can be iterated further to support real-life scenarios. In
the following sections, you will install the application into the cluster and interact with
it to see how it behaves when it runs on top of Kubernetes.

Let’s install the application with the following line:

helm install conference fmtok8s/fmtok8s-conference-chart

You should see the following output (figure 1.19).

NAME: conference
LAST DEPLOYED: Wed Jun 22 16:04:36 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Cloud-Native Conference Platform V1

Chart Deployed: fmtok8s-conference-chart - v0.1.0
Release Name: conference

Figure 1.19 Helm installed the chart fmtok8s-conference version 0.1.0.

helm install creates a Helm Release, which means that you have created an applica-
tion instance, in this case, the instance is called “app”. With Helm, you can deploy mul-
tiple instances of the application if you want to. You can list Helm releases by running
helm list

The output should look like figure 1.20.

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

conference default 1 2022-06-22 16:07:02.129083 +0100 BST deployed fmtok8s-conference-chart-v0.1.0 0.1.0

Figure 1.20 List Helm releases.

26 Part 1 Cloud-Native continuous delivery

NOTE If instead of using helm install you run helm template <chart>,
Helm will output the YAML files which will apply against the cluster. There
are situations where you might want to do that instead of helm install, for
example, if you want to override values the Helm charts don’t allow you to
parameterize or apply any other transformations before sending the request
to Kubernetes.

Verifying that the aPPlication is uP and running

Once the application is deployed, containers will be downloaded to your laptop to run,
and this can take a while. You can monitor the progress by listing all the pods running
in your cluster, once again, using the -owide flag to get more information:

kubectl get pods -owide

The output should look like figure 1.21:

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
conference-fmtok8s-agenda-service-57576cb65c-hzfxv 1/1 Running 0 112s 10.244.2.11 dev-worker3
conference-fmtok8s-c4p-service-6c6f9449b5-z22jk 1/1 Running 3 (86s ago) 112s 10.244.2.10 dev-worker3
conference-fmtok8s-email-service-6fdf958bdd-8622z 1/1 Running 0 112s 10.244.1.11 dev-worker
conference-fmtok8s-frontend-5bf68cf65-s7rn2 1/1 Running 0 112s 10.244.3.13 dev-worker2
conference-postgresql-0 1/1 Running 0 112s 10.244.3.15 dev-worker2
conference-redis-master-0 1/1 Running 0 112s 10.244.1.14 dev-worker
conference-redis-replicas-0 1/1 Running 0 112s 10.244.1.15 dev-worker

Figure 1.21 Listing application pods.

Something that you might notice in the list of pods is that we are not only running the
application’s services, but we are also running Redis and PostgreSQL because the C4P
and Agenda services need persistent storage. Besides the services, we will have these
two databases running inside our Kubernetes Cluster. Both the “fmtok8s-agenda-ser-
vice” and “fmtok8s-c4p-service” Helm charts can be configured to not create these
databases if we want to connect our services with existing databases outside our Kuber-
netes cluster. To quickly recap, our application services and the databases that we are
running look like figure 1.22:

Figure 1.22 Application
services and databases.

 27The need for a “walking skeleton”

On figure 1.21, you need to pay attention to the READY and STATUS columns, where
1/1 in the READY column means that one replica of the pod is running and one is
expected to be running. As you can see the RESTART column is showing 3 for the
Call for Proposals service (fmtok8s-c4p-service); this is because the service depends
on Redis to be up and running for the service to be able to connect to it. While Redis
is bootstrapping, the application will try to connect and if it fails it will automatically
restart to try again, as soon as Redis is up the service will connect to it.

Notice that pods can be scheduled in different nodes. You can check this in the
NODE column; this is Kubernetes efficiently using the cluster resources.

If all the pods are up and running, you’ve made it! The application is now up and
running, and you can access it by pointing your favorite browser to http://localhost.

If you require, there is a step-by-step tutorial on how to deploy this application to a
Kubernetes cluster using Helm, which you can find at the following repository: https://
github.com/salaboy/from-monolith-to-k8s/tree/main/helm.

1.3.4 Interacting with your application

In the previous section, we installed the application into our local Kubernetes Cluster.
In this section, we will quickly interact with the application to understand how the ser-
vices are interacting to accomplish a simple use case: receiving and approving propos-
als. Remember that you can access the application by pointing your browser to http://
localhost.

The Conference Platform application should look like figure 1.23:

Figure 1.23 Conference main page.

If you switch to the Agenda section now you should see something like figure 1.24:

https://github.com/salaboy/from-monolith-to-k8s/tree/main/helm
https://github.com/salaboy/from-monolith-to-k8s/tree/main/helm

28 Part 1 Cloud-Native continuous delivery

Figure 1.24 Conference empty Agenda when we first install the application.

The application’s Agenda Page lists all the talks scheduled for the conference. Poten-
tial speakers can submit proposals that will be reviewed by the conference organizers
(figure 1.25). When you start the application for the first time, there will be no talks
on the agenda, but you can now go ahead and submit a proposal from the Proposals
section.

Figure 1.25 Submitting a proposal for organizers to review.

Notice that there are four fields (Title, Author, Email, and Abstract) in the form that
you need to fill in to submit a proposal. The application currently offers a Generate
button to create random content that you can submit. The organizers will use this
information to evaluate your proposal and get in touch with you via email if your pro-
posal gets approved or rejected. Once the proposal is submitted, you can go to the

 29The need for a “walking skeleton”

Back Office and Approve or Reject submitted proposals. You will be acting as a confer-
ence organizer on this screen in figure 1.26:

Figure 1.26 Conference organizers can Accept or Reject incoming proposals.

Accepted proposals will appear on the Main Page. Attendees who visit the page at this
stage can see the conferences main speakers (figure 1.27).

Figure 1.27 Your proposal is now live on the agenda!

At this stage, the potential speaker should have received an email about the approval
or rejection of his/her proposal. You can check this by looking at the Email service
logs, using kubectl from your terminal (figure 1.28):

kubectl logs -f app-fmtok8s-email-rest-<POD_ID>

30 Part 1 Cloud-Native continuous delivery

Figure 1.28 Email Service logs.

If you made it so far, congrats, the Conference Platform is working as expected. I
encourage you to submit another proposal and reject it, to validate that the correct
email is being sent to the potential speaker.

In this section you installed the Conference Platform application using Helm, then
verified that the application is up and running and that the platform can be used by
potential speakers and conference organizers to submit proposals, approve or reject
these proposals, and notify potential speakers about these decisions via email.

This simple application allows us to demonstrate a basic use case that now we can
expand and improve to support real users. We have seen that installing a new instance
of the application is quite simple, and by using Helm we can parameterize some appli-
cations configurations, in the second part of this report we will see how to tweak some
of the available configurations. But before moving forward, and now that we have an
application running, we need to dig deeper into what kind of challenges we will face
when building distributed applications like the one that we have just installed.

1.4 Cloud-Native applications challenges
In contrast to a monolithic application, which will go down entirely if something goes
wrong, Cloud-Native applications shouldn’t crash if a service goes down. Cloud-Native
applications are designed for failure and should keep providing valuable functional-
ity in the case of errors. A degraded service while fixing issues is better than having
no access to the application at all. In this section, you will change some of the service

 31Cloud-Native applications challenges

configurations in Kubernetes to understand how the application will behave in differ-
ent situations.

In some cases, application/service developers will need to make sure that they build
their services to be resilient, and some concerns will be solved by Kubernetes or the
infrastructure.

This section covers some of the most common challenges associated with Cloud-Na-
tive applications. I find it useful to know what are the things that are going to go wrong
in advance rather than when I am already building and delivering the application. This
is not an extensive list; it is just the beginning to make sure that you don’t get stuck with
problems that are widely known. The following sections will exemplify and highlight
these challenges with the Conference platform.

¡	Downtime is not allowed: If you are building and running a Cloud-Native applica-
tion on top of Kubernetes, and you are still suffering from application downtime,
then you are not capitalizing on the advantages of the technology stack that you
are using.

¡	Service’s built-in resiliency: Downstream services will go down, and you need to make
sure that your services are prepared for that. Kubernetes helps with dynamic ser-
vice discovery, but that is not enough for your application to be resilient.

¡	Dealing with the application state is not trivial: We have to understand each service’s
infrastructure requirements to efficiently allow Kubernetes to scale up and down
our services.

¡	Data inconsistent data: A common problem of working with distributed applica-
tions is that data is not stored in a single place and tends to be distributed. The
application will need to be ready to deal with cases where different services have
different views of the state of the world.

¡	Understanding how the application is working (monitoring, tracing and telemetry): Hav-
ing a clear understanding of how the application is performing and that it is
doing what it is supposed to be doing is essential to quickly find problems when
things go wrong.

¡	Application Security and Identity Management: Dealing with users and security is
always an after-thought. For distributed applications, having these aspects clearly
documented and implemented early on will help you to refine the application
requirements by defining “who can do what and when”.

Let’s start with the first of the challenges.

1.4.1 Downtime is not allowed

When using Kubernetes, we can easily scale up and down our services replicas. This is
a great feature when your services were created based on the assumption that they will
be scaled by the platform by creating new copies of the containers running the service.

32 Part 1 Cloud-Native continuous delivery

So, what happens when the service is not ready to handle replication, or when there
are no replicas available for a given service?

Let’s scale up the Frontend service to have two replicas running all the time. To
achieve this, you can run the following command:

kubectl scale --replicas=2 deployments/conference-fmtok8s-frontend

If one of the replicas stops running or breaks for any reason, Kubernetes will try to start
another one to make sure that 2 replicas are up all the time (figure 1.29).

Figure 1.29 Two
replicas for the
Frontend service.

You can quickly try this self-healing feature of Kubernetes by killing one of the two
pods of the application Frontend (figure 1.30). You can do this by running the follow-
ing commands:

kubectl get pods

NAME READY STATUS RESTARTS AGE
conference-fmtok8s-agenda-service-57576cb65c-sl27p 1/1 Running 0 6h18m
conference-fmtok8s-c4p-service-6c6f9449b5-j6ksv 1/1 Running 0 6h18m
conference-fmtok8s-email-service-6fdf958bdd-4pzww 1/1 Running 0 6h18m
conference-fmtok8s-frontend-5bf68cf65-pwk5d 1/1 Running 0 2m9s
conference-fmtok8s-frontend-5bf68cf65-zvlzq 1/1 Running 0 6h18m
conference-postgresql-0 1/1 Running 0 6h18m
conference-redis-master-0 1/1 Running 0 6h18m
conference-redis-replicas-0 1/1 Running 0 6h18m

Figure 1.30 Checking that the two replicas are up and running.

Now, copy one of the two Pods Id and delete it:

kubectl delete pod conference-fmtok8s-frontend-5bf68cf65-fc295

Then list the pods again:

kubectl get pods

 33Cloud-Native applications challenges

You can see how Kubernetes (the ReplicaSet more specifically) immediately creates a
new pod when it detects that there is only one running. While this new pod is being
created and started, you have a single replica answering your requests until the second
one is up and running. This mechanism ensures that there are at least two replicas
answering your users’ requests (figure 1.31).

NAME READY STATUS RESTARTS AGE
conference-fmtok8s-agenda-service-57576cb65c-sl27p 1/1 Running 0 6h22m
conference-fmtok8s-c4p-service-6c6f9449b5-j6ksv 1/1 Running 0 6h22m
conference-fmtok8s-email-service-6fdf958bdd-4pzww 1/1 Running 0 6h22m
conference-fmtok8s-frontend-5bf68cf65-8j7lt 0/1 Running 0 2s
conference-fmtok8s-frontend-5bf68cf65-fc295 1/1 Terminating 0 52s
conference-fmtok8s-frontend-5bf68cf65-zvlzq 1/1 Running 0 6h22m
conference-postgresql-0 1/1 Running 0 6h22m
conference-redis-master-0 1/1 Running 0 6h22m
conference-redis-replicas-0 1/1 Running 0 6h22m

Figure 1.31 A new replica is automatically created by Kubernetes as soon as one goes down.

If you have a single replica, if you kill the running pod, you will have downtime in your
application until the new container is created and ready to serve requests (figure 1.32).
You can revert back to a single replica with:

kubectl scale --replicas=1 deployments/conference-fmtok8s-frontend

Go ahead and try this out, delete only the replica available for the Frontend pod:

kubectl delete pod <POD_ID>

Figure 1.32 With a single replica being restarted, there is no backup to answer user requests.

34 Part 1 Cloud-Native continuous delivery

Figure 1.33 With a single
replica being restarted,
there is no backup to
answer user requests.

Right after killing the pod, try to access the application by refreshing your browser
(http://localhost). You should see “503 Service Temporarily Unavailable” in your
browser, because the Ingress Controller (not shown in the previous figure for simplic-
ity) cannot find a replica running behind the API Gateway service (figure 1.34). If you
wait for a bit, you will see the application come back up.

This behavior is to be expected, because the Frontend Service is a user-facing service.
If it goes down, users will not be able to access any functionality, hence having multiple
replicas is recommended. From this perspective, we can assert that the API Gateway /
FrontEnd service is the most important service of the entire application because our
primary goal for our applications is to avoid downtime.

In summary, pay special attention to user-facing services exposed outside of your
cluster. No matter if they are user interfaces or APIs, make sure that you have as many
replicas as needed to deal with incoming requests. Having a single replica should be
avoided for most use cases besides development.

Figure 1.34 With a single replica being restarted, there is no backup to answer user requests.

http://localhost

 35Cloud-Native applications challenges

1.4.2 Building in a service’s resilience

But now, what happens if the other services go down? For example, the Agenda service,
is just in charge of listing all the accepted proposals to the conference attendees.

This service is also critical, because the Agenda List is right there on the main page of
the application (figure 1.35). So, let’s scale the service down:

kubectl scale --replicas=0 deployments/conference-fmtok8s-agenda-service

Figure 1.35 No pods
for the Agenda service.

Right after running this command, the container will be killed, and the service will not
have any container answering its requests.

Try refreshing the application in your browser (figure 1.36):

Figure 1.36 If the Agenda service has no replica running, the Frontend is wise enough to show the
user some cached entries.

36 Part 1 Cloud-Native continuous delivery

As you can see, the application is still running, but the Agenda service is not available
right now. You can prepare your application for such scenarios; in this case, the Fron-
tend has a cached response to at least show something to the user. If for some reason
the Agenda Service is down, at least the user will be able to access other services and
other sections of the application. From the application perspective, it is important to
not propagate the error back to the user. The user should be able to keep using other
services of the application until the Agenda service is restored.

You need to pay special attention when developing services that will run in Kuber-
netes because now your service is responsible for dealing with errors generated by
downstream services. This is important to make sure that errors or services going down
doesn’t bring your entire application down. Having simple mechanisms such as cached
responses will make your applications more resilient and will also allow you to incre-
mentally upgrade these services without worrying about bringing everything down. For
our conference scenario, having a cron job that periodically caches the agenda entries
might be enough. Remember, downtime is not allowed.

Let’s now switch to talking about dealing with the state in our applications and how
it is critical to understand how our application’s services are handling the state from a
scalability point of view. Since we will be talking about scalability, data consistency is the
challenge that we will try to solve next.

1.4.3 Dealing with application state is not trivial

Let’s scale up the agenda service again to have a single replica:

kubectl scale --replicas=1 deployments/conference-fmtok8s-agenda-service

If you created proposals before, you will notice that as soon as the Agenda service goes
back up, you will see the accepted proposals back again on the Agenda page. This is
working only because both the Agenda Service and C4P Service are storing all the pro-
posals and agenda items in external databases. In this context, external means outside
of the pod memory.

Now, what do you think will happen if we scale the Agenda Service up to two replicas
(figure 1.37):

kubectl scale --replicas=2 deployments/conference-fmtok8s-agenda-service
NAME READY STATUS RESTARTS AGE
conference-fmtok8s-agenda-service-57576cb65c-7pfx2 1/1 Running 0 45s
conference-fmtok8s-agenda-service-57576cb65c-cq75h 1/1 Running 0 8m4s
conference-fmtok8s-c4p-service-6c6f9449b5-j6ksv 1/1 Running 0 6h38m
conference-fmtok8s-email-service-6fdf958bdd-4pzww 1/1 Running 0 6h38m
conference-fmtok8s-frontend-5bf68cf65-zvlzq 1/1 Running 0 6h38m
conference-postgresql-0 1/1 Running 0 6h38m
conference-redis-master-0 1/1 Running 0 6h38m
conference-redis-replicas-0 1/1 Running 0 6h38m

 37Cloud-Native applications challenges

Figure 1.37 Two replicas can now deal with more traffic.

With two replicas dealing with your user requests, now the Frontend will have two
instances to query. Kubernetes will take care of doing the load balancing between the
two replicas, but your application will have no control over which replica is hitting.
Because we are using a database to back up the data outside of the context of the ser-
vice pod we can scale the replicas to a number of pods that can deal with the applica-
tion demand (figure 1.38).

Figure 1.38 Both data sensitive services use persistent stores.

One of the limitations of this approach is the number of database connections that
your database support in its default configuration. If you keep scaling up the replicas,
always consider reviewing the database connection pool settings to make sure that your
database can handle all the connections being created by all the replicas.

38 Part 1 Cloud-Native continuous delivery

But for the sake of learning, let’s imagine that we don’t have a database and our
Agenda service keeps all the agenda items in memory. How would the application
behave if we start scaling up the Agenda service pods (figure 1.39)?

 Figure 1.39 What would happen if the Agenda service keeps state in-memory?

By scaling these services up, we have found an issue with the design of one of the appli-
cation services. The Agenda service is keeping state in-memory and that will affect the
scaling capabilities from Kubernetes. For this kind of scenario, when Kubernetes bal-
ances the requests across different replicas, the frontend will receive different data
depending on which replica processed the request.

When running existing applications in Kubernetes you will need to have a deep
understanding of how much data they are keeping in memory because this will affect
how you can scale them up. For web applications that keep HTTP sessions and require
sticky sessions (subsequent requests going to the same replica), you will need to set up
HTTP session replication to get this working with multiple replicas. This might require
more components being configured at the infrastructure level, such as a cache.

Understanding your service requirements will help you to plan and automate your
infrastructural requirements such as Databases, caches, message brokers, etc. The
larger and more complex the application gets the more dependencies on these infra-
structural components it will have.

As we saw before, we installed Redis and PostgreSQL as part of the application Helm
chart, and this is usually not a good idea as databases and tools like message brokers
will need special care by the Operations team that can choose not to run these services
inside Kubernetes.

1.4.4 Dealing with inconsistent data

Having stored data in a relational data store like PostgreSQL or a NoSQL approach
like Redis doesn’t solve the problem of having inconsistent data across different stores.
Because these stores should be hidden away by the service API, you will need to have
mechanisms to check that the data that the services are handling is consistent. In

 39Cloud-Native applications challenges

distributed systems, it is quite common to talk about “eventual consistency”, meaning
that eventually, the system will be consistent. Having eventual consistency is definitely
better than not having consistency at all. For this example, one thing that we can build
is a simple check mechanism that once-in-a-while (imagine once-a-day) checks for the
accepted talks in the Agenda service to see if they have been approved in the Call for
Proposal service. If there is an entry that hasn’t been approved by the Call for Proposal
service (C4P), then we can raise some alerts or send an email to the conference orga-
nizers (figure 1.40).

Figure 1.40 Consistency checks can run as CronJobs.

In figure 1.40 we can see how a CronJob (1) will be executed every X period of time,
depending on how important it is for us to fix consistency issues. Then it will proceed
to query the Agenda service public APIs (2) to check which accepted proposals are
being listed and compare that with the Call for Proposals Service approved list (3).
Finally, if any inconsistency is found, an email can be sent using the Email Service pub-
lic APIs (4).

Think of the simple use case that this application was designed for, what other checks
would you need? One that immediately comes to my mind is about verifying that emails
were sent correctly for Rejection and Approved proposals. For this use case, emails are
really important, and we need to make sure that those emails were sent.

1.4.5 Understanding how the application is working

Distributed systems are complex beasts and fully understanding how they work from
day one can help you to save time down the line when things go wrong. This has
pushed the monitoring, tracing, and telemetry communities really hard to come up
with solutions that help us to understand how things are working at any given time.

The OpenTelemetry (https://opentelemetry.io/) community has evolved alongside
Kubernetes, and it can now provide most of the tools that you will need to monitor how

https://opentelemetry.io/

40 Part 1 Cloud-Native continuous delivery

your services are working. As stated on their website: “You can use it to instrument, gen-
erate, collect, and export telemetry data (metrics, logs, and traces) for analysis in order
to understand your software’s performance and behavior.” It is important to notice
that OpenTelemetry focuses on both the behavior and performance of your software
because they both will impact your users and user experience.

From the behavior point of view, you want to make sure that the application is doing
what it is supposed to do and by that, you will need to understand which services are
calling which other services or infrastructure to perform tasks.

Using Prometheus and Grafana allows us to not only see the service telemetry, but
also build domain-specific dashboards to highlight certain application-level metrics, for
example, the amount of Approved vs Rejected proposals over time as shown in figure
1.41.

Figure 1.41 Monitoring telemetry data with Prometheus and Grafana.

From the performance point of view, you need to make sure that services are respect-
ing their Service Level Agreements (SLAs), which basically means that they are not tak-
ing too long to answer requests. If one of your services is misbehaving and taking more
time than usual, you want to be aware of that.

For tracing, you will need to modify your services if you are interested in understand-
ing the internal operations and their performance. OpenTelemetry provides drop-in
instrumentation libraries in most languages to externalize service metrics and traces
(figure 1.42).

Once the instrumentation libraries are included in our services, we can check the
traces with tools like Jaeger (figure 1.43). You can see the amount of time used by each
service while processing a single user request.

 41Cloud-Native applications challenges

Figure 1.42 OpenTelemetry architecture and library.

Figure 1.43 Tracing diagram from Jaeger.

The recommendation here is: if you are creating a walking skeleton, make sure that it
has OpenTelemetry built in. If you push monitoring to later stages of the project, it will
be too late, things will go wrong, and finding out who is responsible will take you too
much time.

42 Part 1 Cloud-Native continuous delivery

1.4.6 Application security and identity management

If you have ever built a web application, you know that providing identity management
(user accounts and user identity) plus authentication and authorization is quite an
endeavor. A simple way to break any application (cloud-native or not) is to perform
actions that you are not supposed to do, such as deleting all the proposed presenta-
tions unless you are a conference organizer.

In distributed systems, this becomes challenging as well, because authorization and
the user identity need to be propagated across different services. In distributed archi-
tectures, it is quite common to have a component that generates requests on behalf of a
user instead of exposing all the services for the user to interact directly. In our example,
the API Gateway is this component. Most of the time you can use this external-facing
component as the barrier between external and internal services. For this reason, it
is quite common to configure the API Gateway to connect with an authorization and
authentication provider commonly using the OAuth2 protocol.

On the identity management front, you have seen that the application itself doesn’t
handle users or their data, and that is a good thing for regulations such as GDPR. We
might want to allow users to use their social media accounts to log into our applications
without the need for them to create a separate account. This is usually known as social
logic.

There are some popular solutions that brings both OAuth2 and Identity Manage-
ment together such as Keycloak (https://www.keycloak.org/) and Zitadel (https://
zitadel.com/opensource). These Open Source projects provide a one-stop-shop for
Single Sign-On solution and advanced Identity Management. In the case of Zitadel, it
also provide a managed service that you can use if you don’t want to install and maintain
a component for SSO and Identity management inside your infrastructure.

Same as with tracing and monitoring; if you are planning to have users (and you
probably will have, sooner or later) including single sign-on and identity management
into the walking skeleton will push you to think about the specifics of “who will be able
to do what”, refining your use case even more.

1.5 Running Cloud-Native applications
In the previous sections, we have covered a few common challenges that you will face
while building Cloud-Native applications, but these are not all. Can you think of other
ways of breaking this first version of the application?

Notice that tackling the challenges discussed in this chapter will help, but there are
other challenges related to how we deliver a continuously evolving application com-
posed of a growing number of services.

Now that we have a Cloud-Native application up and running and we understand
some of the advantages and challenges that we get when working with these applica-
tions on top of Kubernetes, we are ready to jump into part two, which covers what it
takes to deliver new features to these applications.

 43Running Cloud-Native applications

If we want to map what we have done in part 1 to our Continuous Delivery journey,
we can say that:

¡	We created a development environment (in our local pc/laptop).

¡	We deployed a Cloud-Native application that was already packaged using Helm.

¡	We interacted with an instance of our Cloud-Native Conference platform as
end-users and understood its limitations and challenges.

In some way, starting the journey by deploying the application to a local environment
might seem counterintuitive, because to deploy the application somebody must have
code, build, and package the application. But if we go all the way back to section 1.2,
we should be measuring our practices to deliver business value. In this case, we have
managed to create a new instance of the application by creating a local KinD cluster
and running two lines to install the application in the cluster. If your business is to
provide these instances as a service for customers, this should be one of your key mea-
surements (figure 1.44).

Figure 1.44 Creating a new instance of our application.

It is important to understand that the steps that we executed for our local environment
will work for any Kubernetes cluster no matter the cluster size and location. While each
cloud provider will have its own security and identity mechanisms, the Kubernetes APIs
and resources that we created when we installed our application Helm chart to the
cluster are going to be exactly the same. If you now use Helm capabilities to fine-tune
your application (for example resource consumptions and network configurations)
for the target environment, you can easily automate these deployments to any Kuber-
netes cluster.

Before moving on, it is worth also recognizing that a developer configuring applica-
tion instances might not be the best use of their time. A developer having access to the
production environment that users/customers are accessing might also not be optimal;

44 Part 1 Cloud-Native continuous delivery

hence, we want to make sure that developers are focused on building new features and
improving our application. Figure 1.45 shows how we should be automating all the
steps involved in building, publishing, and deploying the artifacts that developers are
creating, making sure that they can focus on keep adding features to the application
instead of manually dealing with packaging, distributing, and deploying new versions
when they are ready. This is the primary focus in part 2 of this report.

Figure 1.45 Developers should focus on building features, so we need to automate the entire process.

Understanding the tools that we can use to automate the path from source code
changes to running software in a Kubernetes cluster is fundamental to enabling devel-
opers to focus on what they do best “code new features”. Another big difference that
we will be tackling is that Cloud-Native applications are not static. As you can see in
figure 1.45, we will not be installing a static application definition, we want to release
and deploy new versions of the services as they become available.

Part 2 covers the tools that we need in order to update our application’s services code
and release new versions of the services that can be deployed in any number of environ-
ments. We will also look at how to create these environments and which tools can be
used to manage them and keep them always in sync.

45

2Delivering
Cloud-Native applications

In part 1, you installed and interacted with a simple distributed Conference Plat-
form composed of four services. This second part covers what it takes to deliver each
of these components in a continuous delivery fashion by using Pipelines as delivery
mechanisms. We will start this second part by describing and showing in practice
how each of these services can be built, packaged, released, and published so they
can run in your organization’s environments.

We will look at two main concepts: Service Pipelines and Environment Pipelines. The
Service Pipeline takes care of all the steps needed to build your software from source
code until the artefacts are ready to run. Environment Pipelines, on the other hand,
cover the aspects of dealing with the installation and upgrade of new versions of each
of these services into a live environment such as staging, testing, and production.

This second part is divided into four main sections:

¡	What does it take to deliver a Cloud-Native application?

¡	Pipelines

– What is a Service Pipeline?

• Tekton as the Cloud-Native Pipeline Engine

• Service Pipelines in action with Tekton

– What is an Environment Pipeline?

• Environment pipeline requirements

• ArgoCD for automated deployments

46 Part 2 Delivering Cloud-Native applications

¡	Release strategies

– Kubernetes built-in mechanisms

– Using Argo Rollouts implementing different release strategies such as Canary
Releases and Blue/Green deployments

In part 1 we started by asking, “Are you Cloud-Native?” Here in Part 2, we’ll begin
with something a bit more advanced: How do you continuously deliver a Cloud-Native
application?

2.1 What does it take to continuously deliver a Cloud-Native
Application?
When working with Kubernetes, teams are now responsible for more moving pieces
and tasks involving containers and how to run them in Kubernetes. These extra tasks
don’t come for free. Teams need to learn how to automate and optimize the steps
required to have each service up and running. Tasks that were the responsibility of the
operations teams are now becoming more and more the responsibility of the teams in
charge of developing each of the individual services. New tools and new approaches
give developers the power to develop, run, and maintain the services they produce.
The tools that we will look at in the second half of this chapter are designed to auto-
mate all the tasks involved, from source code to a service that is up and running inside
Kubernetes.

This part is focused on describing the mechanisms needed to deliver software com-
ponents (our application services) to multiple environments where these services will
run. But before jumping into the tools, let’s take a quick look at the challenges that we
are facing.

Building and delivering cloud-native applications present significant challenges that
teams must tackle:

¡	Dealing with different teams building different pieces of the application. This
requires coordination between teams and making sure that services are designed
in a way that the team responsible for a service is not blocking other teams’ prog-
ress or their ability to keep improving their services.

¡	We need to support upgrading a service without breaking or stopping all the other services
that are running. If we want to achieve continuous delivery, services should be
able to be upgraded independently without the fear of bringing down the entire
application.

¡	Storing and publishing several artifacts per service that can be accessed/downloaded from
different environments that might be in different regions. If we are working in a cloud
environment, all servers are remote, and all produced artifacts need to be acces-
sible for each of these servers to fetch. If you are working on an on-premise setup,
all the repositories for storing these artifacts will need to be provisioned, config-
ured, and maintained in-house.

 47What does it take to continuously deliver a Cloud-Native Application?

¡	Managing and provisioning different environments for various purposes such as develop-
ment, testing, QA, and production. If you really want to speed up your development
and testing initiatives, developers and teams should be able to provision these
environments on-demand. Having environments configured as close as possible
to the real production environment will save you a lot of time in catching errors
before they are hitting your live users.

As we saw in the previous chapter, the main paradigm shift when working with
Cloud-Native applications is that there is no single code base for our application.
Teams can work independently on their services, but this requires new approaches to
compensate for the complexities of working with a distributed system. If teams worry
and waste time every time that a new service needs to be added to the system, we are
doing things wrong. End-to-end automation is necessary for teams to feel comfortable
about adding or refactoring services. This automation is usually performed by what
is commonly known as Pipelines. As shown in figure 2.1, these pipelines describe what
needs to be done to build and run our services, and usually they can be executed with-
out human intervention.

Figure 2.1 From source to a running service using a pipeline.

But what are these pipelines doing exactly? Do we need to create our own pipelines
from scratch? How do we implement these pipelines in our projects? Do we need one
or more pipelines to achieve this?

The next two sections are focused on using pipelines to build solutions that can be
copied, shared, and executed multiple times to produce the same results. Pipelines can
be created for different purposes, and it is quite common to define them as a set of steps
(one after the other in sequence) that produce a set of expected outputs. Based on
these outputs, these pipelines can be classified into different groups.

Most pipeline tools out there allow you to define pipelines as a collection of tasks
(also known as steps or jobs) that will run a specific job or script to perform a concrete
action. These steps can be anything, from running tests, copying code from one place
to another, deploying software, provisioning virtual machines, etc.

48 Part 2 Delivering Cloud-Native applications

Pipeline definitions can be executed by a component known as the Pipeline Engine,
which is in charge of picking up the pipeline definition to create a new pipeline instance
that runs each task. The tasks will be executed one after the other in sequence, and
each task execution might generate data that can be shared with the following task. If
there is an error in any of the steps involved with the pipeline, the pipeline stops, and
the pipeline state will be marked as in error (failed). If there are no errors, the pipeline
execution (also known as pipeline instance) can be marked as successful. Depending
on the pipeline definition and if the execution was successful, we should verify that the
expected outputs were generated or produced.

In figure 2.2, we can see the Pipeline Engine picking up our pipeline definition and
creating different instances that can be parameterized differently to have different out-
puts. For example, Pipeline Instance 1 finished correctly while Pipeline instance 2 is
failing to finish executing all the tasks included in the definition. Pipeline Instance 3 in
this case is still running.

Figure 2.2 A pipeline definition can be instantiated by a Pipeline Engine multiple times.

As expected, with pipeline definitions we can create loads of different automation
solutions, but how do these concepts apply to delivering Cloud-Native applications?
For Cloud-Native applications, we have very concrete expectations about how to build,
package, release, and publish our software components (services) and where these
should be deployed. In the context of delivering cloud-native applications we can
define two main kinds of pipelines:

¡	Service Pipelines: Take care of the building, unit testing, packaging, and distribut-
ing (usually to an artifact repository) of our software artifacts.

¡	Environment Pipelines: Take care of deploying and updating all the services in a
given environment, such as staging, testing, production, etc.

 49Service Pipelines

Service and Environment Pipelines are executed on top of different resources and
with different expectations. The following sections go into more detail about the steps
that we will need to define for our service and environment pipelines, because these
steps will be similar no matter which technology stack we are using. Let’s look at the
archetype of a Service Pipeline definition.

2.2 Service Pipelines
A Service Pipeline is in charge of defining and executing all the steps required to build,
package, and distribute a service artifact so it can be deployed into an environment. A
Service Pipeline is not responsible for deploying the newly created service artifact, but
it can be responsible for notifying interested parties that there is a new version avail-
able for the service.

If you standardize how your services need to be built, packaged, and released, you
can share the same pipeline definition for different services. You should try to avoid
pushing each of your teams to define a completely different pipeline for each service,
because they will probably be reinventing something that has been already defined,
tested, and improved by other teams.

As we will see in this section, there is a considerable amount of tasks that need to be
performed and a set of conventions that when followed can reduce the amount of time
required to perform these tasks.

The name “Service Pipeline” references the fact that each of our application services
will have a pipeline that describes the tasks required for that particular service. If the
services are similar and they are using a similar technology stack, it makes sense for the
pipelines to look quite similar. One of the main objectives of these Service Pipelines is
to contain enough detail so they can be run without any human intervention, automat-
ing all the tasks included in the pipeline from end to end.

NOTE It is tempting to think about creating a single pipeline for the entire appli-
cation (collection of services), as we did with monolith applications, but that
defeats the purpose of independently updating each service at its own pace.
You should avoid situations where you have a single pipeline defined for a set
of services, because it will block your ability to release services independently.

2.2.1 Conventions will save you time

Service Pipelines can be more opinionated on how they are structured and what is
their reach, and by following some of these strong opinions and conventions you can
avoid pushing your teams to define every little detail and discover these conventions by
trial and error. The following approaches have been proven to work:

¡	Trunk-based development: The idea here is to make sure that what you have in the
main branch of your source code repository is always ready to be released. You
don’t merge changes that break the build and release process of this branch. You
only merge if the changes that you are merging are ready to be released. This
approach also includes using feature branches, which allow developers to work

50 Part 2 Delivering Cloud-Native applications

on features without breaking the main branch. When the features are done and
tested, developers can send pull requests (change requests) for other developers
to review and merge. This also means that when you merge something to the
main branch, you can automatically create a new release of your service (and
all the related artifacts). This creates a continuous stream of releases which is
generated after each new feature is merged into the main branch. Because each
release is consistent and has been tested, you can then deploy this new release
to an environment that contains all the other services of your application. This
approach enables the team behind the service to move forward and keep releas-
ing without worrying about other services.

¡	One service/one repository/one service pipeline: You keep your service source code and
all the configurations that need to be built, packaged, released, and deployed
into the same repository. This allows the team behind the service to push changes
at any pace they want, without worrying about other services’ source code. It is a
common practice to have the source code in the same repository where you have
the Dockerfile describing how the Docker image should be created, as well as the
Kubernetes manifest required to deploy the service into a Kubernetes Cluster.
These configurations should include the pipeline definition that will be used to
build and package your service. A quick note about mono-repositories, using one
repository per service might become too complicated to manage for some orga-
nizations; hence, some people like having a single repository with all the services
and then one service pipeline configured to build that specific service. I am not
a fan of either of these approaches, but you need to keep an eye on bottlenecks.
If too many repositories (one for each service) becomes a burden, you should
check best practices around mono-repositories. If a single repository and who
can commit what and when becomes something that is slowing down your teams,
you might want to separate the code into separate repositories to avoid pushing
different teams to implement complex coordination mechanisms to push (or
merge) new code to the code base.

¡	Consumer-driven contract testing: Your service uses contracts to run tests against
other services, so unit testing an individual service shouldn’t require having
other services up and running. By creating consumer-driven contracts, each ser-
vice can test its own functionality against other services’ APIs. If any of the down-
stream services is released, a new contract is shared with all the upstream services
so they can run their tests against the new version.

If we take these practices and conventions into account, we can define the responsibil-
ity of a Service Pipeline as follows: “Transform source code to an artifact that can be
deployed in any environment”.

2.2.2 Service pipeline structure

With this definition in mind, let’s look at what tasks are included in Service Pipelines
for Cloud-Native applications that will run on Kubernetes:

 51Service Pipelines

¡	Register to receive notifications about changes in the source code repository main branch:
(Source version control system, nowadays a Git repository) If the source code
changes, we need to create a new release. We create a new release by triggering
the Service Pipeline.

¡	Clone the source code from the repository: To build the service; we need to clone the
source code into a machine that has the tools to build/compile the source code
into a binary format that can be executed.

¡	Create a new tag for the new version to be released: Based on trunk-based development,
every time that a change happens a new release can be created. This will help us
to understand what is being deployed and what changes were included in each
new release.

¡	Build and test the source code:

– As part of the build process, most projects will execute unit tests and break the
build if there are any failures.

– Depending on the technology stack that we are using, we will need to have a
set of tools available for this step to happen, for example, compilers, depen-
dencies, linters (static source code analyzers), etc.

¡	Publish the binary artifacts into an artifact repository: We need to make sure that these
binaries are available for other systems to consume, including the next steps in
the pipeline. This step involves copying the binary artifact to a different location
over the network. This artifact will share the same version that the tag that was
created in the repository, providing us with traceability from the binary to the
source code that was used to produce it.

¡	Building a container: If we are building Cloud-Native services, we will need to build
a container image. The most common way of doing this today is using Docker.
This step requires the source code repository to have, for example, a Dockerfile
defining how this container image needs to be built.

¡	Publish the container into a container registry: In the same way that we published the
binary artifacts that were generated when building our service source code, we
need to publish our container image into a centralized location where it can be
accessed by others. This container image will have the same version as the tag
that was created in the repository and the binary that was published. This helps
us to clearly see which source code will run when you run the container image.

¡	Lint, verify, and package YAML files for Kubernetes deployments (Helm can be used here): If
you are running these containers inside Kubernetes, you need to manage, store,
and version a Kubernetes manifest that defines how the containers are going to
be deployed into a Kubernetes Cluster. If you are using a package manager such
as Helm, you can version the package with the same version used for the binaries
and the container image.

¡	(Optional) Publish these Kubernetes manifests to a centralized location: If you are using
Helm, it makes sense to push these Helm packages (called charts) to a centralized

52 Part 2 Delivering Cloud-Native applications

location. This will allow other tools to fetch these charts so they can be deployed
in any number of Kubernetes Clusters.

¡	Notify interested parties about the new version of the service: If you are trying to auto-
mate all the way from source to a service running, the Service Pipeline (figure
2.3) should be able to send a notification to all the interested services who might
be waiting for new versions to be deployed.

Figure 2.3 Tasks expected for a service pipeline.

The outcome of this pipeline is a set of artifacts that can be deployed to an environment
to have the service up and running. The service itself needs to be built and packaged
in a way that is not dependent on any specific environment. The service can depend on
other services to be present in the environment to work, for example, infrastructural
components such as databases and message brokers, or just other downstream services.

2.2.3 Service Pipelines in real life

In real life, this pipeline will need to run every time that you merge changes to the
main branch of your repository. This is how it should work if you follow a trunk-based
development approach (figure 2.4):

¡	When you merge changes to your main branch, this pipeline should run, creat-
ing a new release for your software. This means that you shouldn’t be merging
code into your main branch if it is not releasable.

 53Service Pipelines

¡	For each of your feature branches, a very similar pipeline should run to verify
that the changes in the branch can be built, tested, and released. In modern
environments, the concept of GitHub pull requests is used to run these pipe-
lines, to make sure that before merging any “pull request” a pipeline validates the
changes.

Figure 2.4 Service pipelines for main branch and feature branches.

This Service Pipeline, shown in figure 2.4, represents the most common steps that you
will need to execute every time you merge something to the main branch, but there
are also some variations of this pipeline that you might need to run under different
circumstances. Different events can kick off a pipeline execution, we can have slightly
different pipelines for different purposes, such as:

¡	Validate a change in a feature branch: This pipeline can execute the same steps as
the pipeline in the main branch, but the artifacts generated should include the
branch name, maybe as a version or as part of the artifact name. Running a pipe-
line after every change might be too expensive and not needed all the time, so
you might need to decide based on your needs.

¡	Validate a pull request/change request: The pipeline will validate that the pull
requests/change requests are valid and that artifacts can be produced with the
recent changes. Usually, the result of the pipeline can be notified back to the user
in charge of merging the PR and also block the merging options if the pipeline
is failing. This pipeline is used to validate that whatever is merged into the main
branch is valid and can be released. Validating pull requests and change requests
can be a good option to avoid running pipelines for every change in the feature
branches, because when the developer(s) is ready to get feedback from the build
system, they can create a PR and that will trigger the pipeline. If developers made
changes on top of the pull request, the pipeline would be retriggered.

Despite small differences and optimizations that can be added to these pipelines,
the behavior and produced artifacts are mostly the same. These conventions and
approaches rely on the pipelines executing enough tests to validate that the service
that is being produced can be deployed to an environment.

54 Part 2 Delivering Cloud-Native applications

2.2.4 Service Pipelines requirements

This section covers the infrastructural requirements for service pipelines to work as
well as the contents of the source repository required for the pipeline to do its work.

Let’s start with the infrastructural requirements that a service pipeline needs to work
(figure 2.5):

¡	Webhooks for source code changes notifications: First, it needs to have access to register
webhooks to the Git repository that has the source code of the service, so a pipe-
line instance can be created when a new change is merged into the main branch.

¡	Artifact repository available and valid credentials to push the binary artifacts: Once the
source code is built; we need to push the newly created artifact to an artifact
repository where all artifacts are stored. This requires having an artifact repos-
itory configured and the valid credentials to be able to push new artifacts to it.

¡	Docker registry and valid credentials to push new container images: In the same way as
we need to push binary artifacts, we need to distribute our Docker containers
so Kubernetes Clusters can fetch the images when we want to provision a new
instance of a service. Having a container registry available with valid credentials is
needed to accomplish this step.

¡	Helm Chart repository and valid credentials: Kubernetes manifests can be packaged
and distributed as Helm charts, so if you are using Helm you will need to have a
Helm Chart repository and valid credentials to push these packages.

Figure 2.5 Service pipelines required infrastructure.

For Service Pipelines to do their job, the repository containing the service’s source
code also needs to have a Dockerfile or the ways to produce a container image and the
necessary Kubernetes manifest to deploy the service into Kubernetes. A common prac-
tice is to have a Helm Chart definition of your service along with your service’s source
code, in other words, a Helm Chart per Service, as we will see in the following sections
(figure 2.6).

 55Service Pipelines

Figure 2.6 The service source code repository needs to have all the configurations for the service
pipeline to work.

Figure 2.6 shows a possible directory layout of our service source code repository,
which includes the source (src) directory which will contain all the files that will be
compiled into binary format. The Dockerfile used to build our container image for the
service and the Helm Chart directory containing all the files to create a Helm Chart
that can be distributed to install the service into a Kubernetes Cluster.

If we include everything that is needed to build, package, and run our service into
a Kubernetes Cluster, the Service Pipeline just needs to run after every change in the
main branch to create a new release of the service.

A more advanced but very useful setup might include running the pipeline for
pull requests (change requests) which can include deploying the artifact to a “Pre-
view” environment where developers and other stakeholders can validate the changes
before merging them to the main branch. Projects like Jenkins X provide this feature
out-of-the-box.

In summary, Service Pipelines are in charge of building our source and related arti-
facts so they can be deployed into an environment. As mentioned before, Service Pipe-
lines are not responsible for deploying the produced service into a live environment,
that is the responsibility of the Environment Pipeline which we will cover after looking
at a couple of different implementations for service pipelines.

2.2.5 Service Pipelines in action

There are several Pipeline Engines out there and even full managed services like
GitHub Actions (https://github.com/features/actions), which will provide loads of
integrations for you to build and package your application’s services. In the follow-
ing sections, we will look at a project called Tekton (https://tekton.dev), which was
designed as a Pipeline Engine for Kubernetes. Because Tekton is a generic Pipeline
Engine, you can create any kind of pipeline with it, we will be contrasting Tekton with
GitHub actions.

https://github.com/features/actions
https://tekton.dev

56 Part 2 Delivering Cloud-Native applications

Tekton was originally created as part of the Knative project (http://knative.dev)
from Google; it was initially called Knative Build and later separated from Knative to
be an independent project. You can visit the project site at http://tekton.dev. Tekton’s
main characteristic is that it is a Cloud-Native Pipeline Engine designed for Kubernetes.
In the next section, we will look into how to use Tekton to define Service Pipelines.

2.2.6 Tekton in action

In Tekton, you have two main concepts: Tasks and Pipelines. Tekton, the Pipeline
Engine is composed of a set of components that will understand how to execute tasks
and pipelines that we define. Tekton, as most of the Kubernetes projects covered in
this report, can be installed into your Kubernetes Cluster by running kubectl or using
Helm Charts.

You can find a step-by-step tutorial for this section in this repository: https://github.
com/salaboy/from-monolith-to-k8s/tree/main/tekton.

When you install Tekton, you are installing a set of Custom Resource Definitions,
which are extensions to the Kubernetes APIs, which in the case of Tekton, defines what
tasks and pipelines are. Tekton also installs the Pipeline Engine itself that knows how to
deal with tasks and pipelines resources when we create them.

You can install Tekton using Helm, thanks to a collaboration with the Continuous
Delivery foundation: https://github.com/cdfoundation/tekton-helm-chart.

As with every Helm Chart, you will need to first add the Helm Chart repository and
then install the chart:

helm repo add cdf https://cdfoundation.github.io/tekton-helm-chart/
helm repo update
helm install tekton cdf/tekton-pipeline

Once you install the Tekton Helm Chart, you will see that a new namespace was cre-
ated. This new namespace called “tekton-pipelines” contains the pipeline controller
(which is the Pipeline Engine) and the pipeline webhook listener, which is used to
listen for events coming from external sources, such as Git repositories.

You can also install the “tkn” command-line tool, which helps a lot if you are working
with multiple tasks and complex pipelines. You can follow the instructions for installa-
tions at https://github.com/tektoncd/cli.

If you now list all the Custom Resource Definitions that are installed in the cluster
and belongs to tekton you will see that there is a new set of resources that you can use:

> kubectl get crds | grep tekton
clustertasks.tekton.dev
conditions.tekton.dev
pipelineresources.tekton.dev
pipelineruns.tekton.dev
pipelines.tekton.dev
runs.tekton.dev
taskruns.tekton.dev
tasks.tekton.dev

We can get all the Custom Resource
Definitions (crd) using kubectl and
filtering only the ones related to Tekton.

The resource types that we will be creating for our
pipelines. Notice that you can get these resources by
also using “kubectl get” and the resource type.

http://knative.dev
http://tekton.dev
https://github.com/salaboy/from-monolith-to-k8s/tree/main/tekton
https://github.com/salaboy/from-monolith-to-k8s/tree/main/tekton
https://github.com/cdfoundation/tekton-helm-chart
https://github.com/tektoncd/cli

 57Service Pipelines

Once you have Tekton installed, you can start by creating a simple task definition in
YAML. A Task in Tekton will look like a normal Kubernetes resource:
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: echo-hello-world
spec:
 steps:
 - name: echo
 image: ubuntu
 command:
 - echo
 args:
 - “Hello World”

Derived from this example, you can create a task for whatever you want, because you
have the flexibility to define which container to use and which commands to run. Once
you have the task definition, you need to make that available to Tekton by applying this
file to the cluster with kubectl apply -f task.yaml. By applying the file into Kuber-
netes, we are only making the definition available to the Tekton components in the
cluster, but the task will not run.

If you want to run this task, a task can be executed multiple times, Tekton requires
you to create a TaskRun resource like the following:

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 generateName: hello-run-
spec:
 taskRef:
 name: echo-hello-world

Alternatively, you can use tkn to start a task definition:

salaboy> tkn task start echo-hello-world
TaskRun started: echo-hello-world-run-q7vgw

In order to track the TaskRun progress run:

tkn taskrun logs echo-hello-world-run-q7vgw -f -n default

And then get the logs by running the suggested command:

salaboy> tkn taskrun logs echo-hello-world-run-q7vgw -f -n default
[echo] Hello World

Whether you apply this TaskRun to the cluster (kubectl apply -f taskrun.yaml or
using tkn task start), the Pipeline Engine will execute this task. On the YAML file,
you can see this resource doesn’t have a metadata.name, instead, it has a metadata.
generateName field. When Tekton runs this task, it will generate a unique name for
the resource to track that specific execution. You can keep applying the same resource
and for each time you apply it to the cluster, a new execution will be scheduled. The
TaskRun resources are used to keep all the information on the execution of the task
definitions and the outputs for these executions.

The docker image called ubuntu is going
to be used for this task.

The main command used by this task is
echo. Notice that is an list of commands.

The command arguments (args) in this
case is just a “Hello World” string.
Notice that you can send a list of
arguments for more complex commands.

58 Part 2 Delivering Cloud-Native applications

2.2.7 Pipelines in Tekton

A Task in itself can be useful, but Tekton becomes really interesting when you create
sequences of these tasks by using pipelines.

A pipeline is a collection of these tasks in a concrete sequence, let’s look at a simple
Service Pipeline defined in Tekton (service-pipeline.yaml):

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: service-pipeline
spec:
 resources:
 ...
 tasks:
 - name: clone-repository
 taskRef:
 name: git-clone
 bundle: gcr.io/tekton-releases/catalog/upstream/git-clone:0.4
 params:
 ...
 - name: maven-build
 runAfter: [clone-repository]
 taskRef:
 name: maven
 bundle: gcr.io/tekton-releases/catalog/upstream/maven:0.2
 params:
 …
 - name: docker-image-build-and-publish
 runAfter: [maven-build]
 taskRef:
name: kaniko
bundle: gcr.io/tekton-releases/catalog/upstream/kaniko:0.4
 params:
 …

You can find the full pipeline definition at https://github.com/salaboy/from-mono-
lith-to-k8s/blob/main/tekton/resources/service-pipeline.yaml.

Once again, you will need to apply this pipeline resource to your cluster for Tekton
to know about: kubectl apply -f service-pipeline.yaml.

As you can see in the pipeline definition, the spec.tasks field contains an array of task
references. These tasks need to be already deployed into the cluster and the Pipeline
definition is in charge of defining the sequence in which these tasks will be executed.
These task references can be your own tasks, or as in the example, they can come from
the Tekton Catalog, which is a repository that contains community-maintained task
definitions that you can reuse.

In the same way, because tasks need TaskRuns for the executions, you will need to
create a PipelineRun for every time that you want to execute your pipeline.

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 generateName: service-pipeline-

https://github.com/salaboy/from-monolith-to-k8s/blob/main/tekton/resources/service-pipeline.yaml
https://github.com/salaboy/from-monolith-to-k8s/blob/main/tekton/resources/service-pipeline.yaml

 59Service Pipelines

spec:
 pipelineRef:
 name: service-pipeline

Now when you apply this file to the cluster kubectl apply -f pipelinerun.yaml,
Tekton will execute the pipeline by running all the tasks defined in the pipeline defini-
tion. Alternatively, you can also use tkn:

salaboy> tkn pipeline start service-pipeline

If required, you can find a step-by-step tutorial on how to install Tekton in your Kuber-
netes Cluster and how to run the Service pipeline at the following repository: https://
github.com/salaboy/from-monolith-to-k8s/tree/main/tekton.

2.2.8 Tekton advantages and extras

As we have seen, Tekton is super flexible and allows you to create pretty advanced pipe-
lines, and it includes other features such as:

¡	Input and output mappings to share data between tasks

¡	Event triggers that allow you to listen for events that will trigger pipelines or tasks

¡	A command-line tool to easily interact with tasks and pipelines from your terminal

¡	A simple dashboard to monitor your pipelines and task executions

Figure 2.7 Tekton dashboard is a user interface to monitor your pipelines.

https://github.com/salaboy/from-monolith-to-k8s/tree/main/tekton
https://github.com/salaboy/from-monolith-to-k8s/tree/main/tekton

60 Part 2 Delivering Cloud-Native applications

Figure 2.7 shows the community-driven Tekton dashboard that you can use to visualize
the execution of your pipelines. Remember that because Tekton was built to work on
top of Kubernetes, you can monitor your pipelines using kubectl as with any other
Kubernetes resource, but nothing beats a user interface for less technical users.

But now, if you want to implement a Service Pipeline with Tekton, you will spend
quite a bit of time defining tasks and the pipeline, how to map inputs and outputs,
defining the right events listener for your Git repositories, and then going more low-
level into defining which Docker images you will use for each task. Creating and main-
taining these pipelines and their associated resources can become a full-time job and
for that Tekton launched an initiative to define a catalog where tasks (pipelines and
resources are planned for future releases) can be shared, the Tekton catalog: https://
github.com/tektoncd/catalog

With the help of the Tekton catalog, we can create pipelines that reference tasks that
have been defined in the catalog, hence we don’t need to worry about defining them.
You can also visit https://hub.tekton.dev, which allows you to search for task definitions
and provides you with detailed documentation about how to install and use these tasks
in your pipelines.

Tekton Hub and the Tekton catalog allow you to reuse tasks and pipelines that had
been created by a large community of users and companies (figure 2.8).

Figure 2.8 Tekton Hub is a portal to share and reuse tasks and pipeline definitions.

2.2.9 A workflow approach to automation using Argo Workflows and Argo Events

As you have seen, Tekton provides us with the basic building blocks to construct very
unopinionated pipelines. In other words, we can use Tekton to build not only Ser-
vice Pipelines but almost every imaginable pipeline that will leverage Kubernetes

https://github.com/tektoncd/catalog
https://github.com/tektoncd/catalog
https://hub.tekton.dev

 61Service Pipelines

resource-based approach, scalability, and self-healing features. But Tekton is not alone.
Another project worth checking is Argo Workflows in conjunction with Argo Events,
which also provide a very powerful workflow engine that can be combined with event
sources for building end-to-end automations.

In Argo Workflows we can define Workflow resources to implement Service Pipelines
on steroids. Argo Workflows allow us to define DAGs (direct acyclic graphs) Workflows
enabling us to define dependencies in a declarative for each task on the workflow (fig-
ure 2.9).

A very simple Workflow example defining a DAG is shown:

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: hello-world- # Name of this Workflow
spec:
 - name: diamond
 dag:
 tasks:
 - name: A
 template: echo
 - name: B
 dependencies: [A]
 template: echo
 - name: C
 dependencies: [A]
 template: echo
 - name: D
 dependencies: [B, C]
 template: echo

Figure 2.9 Argo Workflow using DAG task definitions.

As we seen in Tekton, Argo Workflows is also equipped with Templates that promote
the reutilization of the tasks that we define for our workflows. In the previous example,
we can see that each task inside the workflow is referencing the same template, which
makes the Workflow more readable, but it also opens the door to create libraries of
these tasks that can be shared across teams and curated by platform teams.

Name of the task.

The task can depend on an array of
previous tasks.

We can reference which
template will be used for this
particular task, promoting reuse
of these tasks definitions.

62 Part 2 Delivering Cloud-Native applications

It is beside the point to show a Service Pipeline implemented with Argo Workflows,
because it will look similar to the one that we define with Tekton, and it will run in a very
similar way. Workflows are like Tekton Pipelines executed in sequence or in parallel,
and each of them creating containers for each task execution. Workflows run to com-
pletion and report status back to the workflow resource.

Argo Workflows also provides a dashboard where we can monitor our workflow exe-
cutions and logs using a graphical interface instead of the command line tools.

The main reason why you should look at Argo Workflows is because Workflows were
designed alongside Argo Events and the rest of the Argo projects modules such as
ArgoCD and Argo Rollouts that we will dig into later in this report.

With Argo Events, you can consume events from popular event sources such as Git
Repositories, Slack, Kafka, and a large number of supported sources that you can find
here (https://argoproj.github.io/argo-events/concepts/event_source/) and trigger
workflows when events are received.

Argo Events introduce the concepts of event sources, event bus, sensors, and trig-
gers. These concepts allows you to wire Event sources, route events to different sensors,
and define which needs to be informed about those events using triggers.

Argo Events are quite powerful and I recommend you check their official docu-
mentation for more details, specially their architecture at https://argoproj.github.io/
argo-events/concepts/architecture/, which shows how these concepts work together
and can be extended to implement a myriad of integration scenarios. One detail that
I would like to mention here is their use of NATS as their event bus, which will be used
to connect sources with sensors. NATS is a highly efficient way to connect distributed
systems.

Figure 2.10 Argo Workflow and Argo Events to expand our Service Pipeline capabilities.

https://argoproj.github.io/argo-events/concepts/event_source/
https://argoproj.github.io/argo-events/concepts/architecture/
https://argoproj.github.io/argo-events/concepts/architecture/

 63Environment Pipelines

In figure 2.10 we are triggering a workflow from a Git Event source, imagine GitHub,
or GitLab and emitting an event when the workflow is finished. This event can trigger
another workflow, for example, to notify other teams about our new artifact version
and maybe run some security checks after the artifacts were published. The nice thing
about all Argo projects is that when you adopt one, you can smoothly start adding oth-
ers because these projects were designed to work together.

While you can do something similar with Tekton Triggers, it will take you more time
to put the pieces together, because you will need to use other projects to route and con-
sume events from different sources.

Argo Workflows and Argo Events feels more like an end-to-end toolkit to implement
Cloud Native automations, and if they are used alongside ArgoCD and Argo Rollouts
we can cover the entire delivery cycle without reinventing the wheel or gluing tools that
were created by different teams in isolation.

Tekton, in comparison, feels more low-level and very useful if you are planning to
build higher-level abstractions on top and combining it with other tools in the CNCF
ecosystem.

2.3 Environment Pipelines
Environment Pipelines are in charge of configuring and maintaining our environ-
ments. It is quite common for companies to have different environments for different
purposes, for example a staging environment where developers can deploy their latest
versions of the services, or a quality assurance (QA) environment where manual test-
ing happens, and a production environment which is where the real users interact with
our applications. These (staging, QA, and production) are just examples, but there
shouldn’t be any hard limit on how many environments we can have.

In recent years, there has been a big surge in the industry to enable developers to
request new environments in a self-service manner to make sure that they have what
they need to find issues earlier in the development process. If these environments are
closer to how the production environment (where the real users interact with our appli-
cations) operate, developers have a richer context to understand how their applications
behave, to avoid what is commonly known as “but it works on my laptop” symptom.

At the end of the day, these environments are computing resources that someone
needs to provision, configure, and pay for maybe in a cloud provider or on-premise,
which means that optimizing and automating the way of creating and configuring these
resources is vital for the entire development to production cycle.

Once the development is done, and Service Pipelines have produced new artifacts,
Environment pipelines are in charge of promoting these artifacts to our different envi-
ronments until they reach to our end users. Before jumping into how Environment
Pipelines work, we need to cover a bit of background first.

2.3.1 How does this used to work and what has changed lately?

Traditionally, creating new environments was hard and costly. For these two reasons,
creating new environments on demand wasn’t a thing and the differences between

64 Part 2 Delivering Cloud-Native applications

the environment where a developer used to create an application and where the
application ran for end users was completely different. These differences, not only in
computing power, caused a huge stress on operations teams responsible for running
these applications, because they needed to fine tune the applications configurations
depending on the environment capabilities.

Most of the time, deploying a new application or a new version of an application
required you to shut down the server, run some scripts, copy some binaries, and then
restart the server again with the new version running. After the server started again, the
application could fail to start, hence more configuration tunning might be needed.
Most of these configurations were done manually in the server itself, making it really
difficult to remember and keep track of what was changed and why.

As part of automating these processes, tools like Jenkins (a Pipeline Engine) and/or
scripts were used to simplify the process of deploying new binaries. So instead of manu-
ally stopping servers and copying binaries, an operator could run a Jenkins job defining
which versions of the artifacts they wanted to deploy, and Jenkins would run the job
notifying the operator about the output. This approach had two main advantages:

¡	Tools like Jenkins can have access to the environment’s credentials, avoiding
manual access to the servers by the operators.

¡	Tools like Jenkins log every job execution and the parameters, allowing us to
keep track of what was done and the result of the execution.

While automating with tools like Jenkins was a big improvement compared with manu-
ally deploying new versions, there were still some issues, for example, having fixed envi-
ronments that were completely different from where the software was being developed
and tested. To reduce even further the difference between different environments, we
needed to first have a specification of how the environment is created and configured
down to the version of the operating system and the software that was installed into the
machines or virtual machines that conform the environment. Virtual machines helped
a lot with this task, because we could easily create two or more virtual machines that
were configured exactly in the same way.

When using virtual machines, we can even give our developers virtual machines for
them to work on. But now we have a new problem, because we will need new tools to
manage, run, maintain, and store our virtual machines. If we have multiple physical
machines where we want to run virtual machines, we don’t want our operations team
to manually start these VMs in each server; hence, we will need a hypervisor to monitor
and run VMs is a cluster of physical computers.

Using tools Jenkins and virtual machines (with hypervisors) was a huge improve-
ment, because we implemented some automation, operators didn’t need to manually
access to servers or VMs to change configurations, and our environments were created
using a configuration that was predefined in a fixed virtual machine configuration (fig-
ure 2.11).

 65Environment Pipelines

Figure 2.11 Jenkins and virtual machines.

While this approach is still a common approach in the industry, there is a lot of room
for improvement, for example in the following areas:

¡	Jenkins jobs and scripts are imperative by nature, which means that they specify
step-by-step what needs to be done. This can be a great disadvantage, because if
something changes, let’s say a server is no longer there or requires more data to
authenticate against a service, the logic of the pipeline will fail, and it will need to
be manually updated.

¡	Virtual machines are heavy. Every time that you start a virtual machine, you start
a complete instance of an operating system. Running the operating system pro-
cesses is not adding any business value, and the larger the cluster the bigger the
operating system overhead is. Running VMs in developers environment might
not be possible depending on the VMs requirements.

¡	Most of the environments configurations and how the deployments are done are
encoded inside tools like Jenkins, where complex pipelines tend to grow out of
control, making the changes very risky and migration to newer tools and stacks
very difficult.

¡	Each cloud provider has a different way to create virtual machines, pushing us
into a vendor lock-in situation, where if we created VMs for Amazon Web Ser-
vices, we cannot run these VMs into the Google Cloud Platform or Microsoft
Azure.

How are teams approaching this with modern tooling? That is an easy question,
because we now have Kubernetes and Containers that aimed to solve the overhead
caused by VMs and the cloud provider portability by relying on containers and the
widely adopted Kubernetes APIs. Kubernetes also provide us with the base building
blocks to make sure that we don’t need to shut down our servers to deploy new appli-
cations or change their configurations. If we do things in the Kubernetes way, we
shouldn’t have any downtime in our applications.

66 Part 2 Delivering Cloud-Native applications

But Kubernetes on its own doesn’t solve the process of configuring the clusters them-
selves, applying changes to their configurations or how we deploy applications to these
clusters. That’s why you might have heard about GitOps.

What is GitOps and how does it relate to our Environment Pipelines?

2.3.2 What is GitOps and how does it relate to Environment Pipelines?

If we don’t want to encode all of our operational knowledge in a tool like Jenkins where
it is difficult to maintain, change, and keep track of it, we need a different approach.

The term GitOps, defined by the OpenGitOps group (https://opengitops.dev/),
defines the process of creating, maintaining, and applying the configuration of our
environments and applications declaratively using Git as the source of truth. The
OpenGitOps group defines four core principles that we need to have in mind when we
talk about GitOps:

1 Declarative: A system managed by GitOps must have its desired state expressed
declaratively. We have this pretty much covered if we are using Kubernetes mani-
fest, because we are defining what needs to be deployed and how that needs to be
configured using declarative resources that Kubernetes will reconcile.

2 Versioned and immutable: Desired state is stored in a way that enforces immutability,
versioning, and retains a complete version history. The OpenGitOps initiative
doesn’t enforce the use of Git; as soon as our definitions are stored, versioned,
and immutable we can consider it as GitOps. This opens the door to store files in
for example S3 buckets, which are also versioned and immutable.

3 Pulled automatically: Software agents automatically pull the desired state declara-
tions from the source. The GitOps software is in charge of pulling the changes
from the source periodically in an automated way. Users shouldn’t worry about
when the changes are pulled.

4 Continuously reconciled: Software agents continuously observe actual system state
and attempt to apply the desired state. This continuous reconciliation helps us
build resilience in our environments and the entire delivery process, because we
have components that are in charge of applying the desired state and monitor
our environments from configuration drifts. If the reconciliation fails, GitOps
tools will notify us about the issues and keep trying to apply the changes until the
desired state is achieved.

By storing the configuration of our environments and applications in a Git repository,
we can track and version the changes that we make. By relying on Git, we can easily
rollback changes if these changes don’t work as expected. GitOps not only covers the
storying of the configuration but also the process of applying these configurations to
the computing resources where the applications will run.

GitOps was coined in the context of Kubernetes, but this approach is not new,
because configuration management tools have existed for a long time. With the rise
of cloud providers tools for managing Infrastructure as Code becoming popular, tools
such as Chef, Ansible, Terraform, and Pulumi are loved by operation teams, because
these tools allow them to define how to configure cloud resources and configure them

https://opengitops.dev/

 67Environment Pipelines

together in a reproducible way. If you need a new environment, you just run this Terra-
form Script or Pulumi app and then, voila, the environment is up and running. These
tools are also equipped to communicate with the cloud provider APIs to create Kuber-
netes Clusters, so we can automate the creation of these clusters.

With GitOps we are doing configuration management and relying on the Kuber-
netes APIs as the standard way for deploying our applications to Kubernetes Clusters.
With GitOps we use a Git repository as the source of truth for our environment’s inter-
nal configurations (Kubernetes YAML files) while removing the need to manually
interact with the Kubernetes Clusters to avoid configuration and security issues. When
using GitOps tools, we can expect to have software agents in charge of pulling from the
source of truth (Git repository, in this example) periodically and constantly monitoring
the environment to provide a continuous reconciliation loop. This ensures that the
GitOps tool will do its best to make sure that the desired state express in the repository
is what we have in our live environments.

By using GitOps we can reconfigure any Kubernetes Cluster to have the same config-
uration that is stored in our Git repository by running an Environment Pipeline (figure
2.12).

Figure 2.12 Infrastructure as Code, GitOps, and Environment Pipelines working together.

By separating the infrastructure and application concerns, our Environment Pipe-
lines allow us to make sure that our environments are easy to reproduce and to update
whenever needed. By relying on Git as the source of truth, we can rollback both our
infrastructural changes or our application changes as needed. It is also important to
understand that because we are working with the Kubernetes APIs, our environments
definitions are now expressed in a declarative way, supporting changes in the con-
text where these configurations are applied and letting Kubernetes to deal on how to
achieve the desired state expressed by these configurations.

Figure 2.13 shows these interactions, where operation teams only make changes to
the Git repository that contains our environment configuration, and then a pipeline (a
set of steps) is executed to make sure that this configuration is in sync with the target
environment.

68 Part 2 Delivering Cloud-Native applications

Figure 2.13 Defining the state of the cluster using the configuration in Git (GitOps).

When you start using Environment Pipelines, you aim to stop interacting, changing,
or modifying the environment’s configuration manually and all interactions are done
exclusively by these pipelines. To give a very concrete example, instead of executing
kubectl apply -f or helm install into our Kubernetes Cluster, a component will
be in charge of running these commands based on the contents of a Git repository that
has the definitions and configurations of what needs to be installed in the cluster.

In theory, a component that monitors a Git repository and reacts to changes is all you
need, but in practice, a set of steps are needed to make sure that we have full control
of what is deployed to our environments. Hence, thinking about GitOps as a pipeline
helps us to understand that for some scenarios, we will need to add extra steps to these
pipelines that are triggered every time that an environment configuration is changed.

Let’s look at what these steps look like with more concrete tools that we will com-
monly find in real-life scenarios.

2.3.3 Steps involved with an Environment Pipeline

An environment pipeline will usually include the following steps:

¡	Reacting to changes in the configuration: This can be done in two different ways poll-
ing vs pushing:

– Polling for changes: A component can pull the repository and check if there
were new commits since the last time it checked. If new changes are detected,
a new environment pipeline instance is created

– Pushing changes using webhooks: If the repository supports webhooks, the repos-
itory can notify our environment pipelines that there are new changes to
process.

¡	Clone the source code from the repository which contains the desired state for our environ-
ment: This step will clone the configurations that had changed to be able to apply

 69Environment Pipelines

them to the cluster. This usually includes doing a kubectl apply -f or a helm
install command to install new versions of the artifacts. Notice that with both,
kubectl or Helm, Kubernetes is smart enough to recognize where the changes
are and only apply the differences.

¡	Apply the desired state to a live environment: Once the pipeline has all the configura-
tions locally accessible, it will use a set of credentials to apply these changes to a
Kubernetes Cluster. Notice that we can fine-tune the access rights that the pipe-
lines have to the cluster to make sure that they are not exploited from a security
point of view. This also allows you to remove access from individual team mem-
bers to the clusters where the services are deployed.

¡	Verify that the changes are applied and that the state is matching what is described inside the
Git repository (deal with configuration drift): Once the changes are applied to the live
cluster, checking that the new versions of services are up and running is needed
to identify if we need to revert back to a previous version. In the case that we need
to revert back, it is quite simple as all the history is stored in Git, applying the
previous version is just looking at the previous commit in the repository (figure
2.14).

Figure 2.14 Environment pipeline for a Kubernetes environment.

For the Environment Pipeline to work, a component that can apply the changes to the
environment is needed, and it needs to be configured accordingly with the right access
credentials. The main idea behind this component is to make sure that nobody will
change the environment configuration by manually interacting with the cluster. This
component is the only one allowed to change the environment configuration, deploy
new services, upgrade services versions, or remove services from the environment.

For an Environment Pipeline to work, the following two considerations need to be met:

70 Part 2 Delivering Cloud-Native applications

¡	The repository containing the desired state for the environment needs to
have all the necessary configurations to create and configure the environment
successfully.

¡	The Kubernetes Cluster where the environment will run needs to be configured
with the correct credentials for allowing the state to be changed by the pipelines.

The term Environment Pipeline references the fact that each environment will have a
pipeline associated with it. Because having multiple environments is usually required
(development, staging, production) for delivering applications, each will have a
pipeline in charge of deploying and upgrading the components that are running in
them. By using this approach, promoting services between different environments is
achieved by sending pull requests/change requests to the environment’s repository
and the pipeline will take care of reflecting the changes into the target cluster.

2.3.4 Environment Pipeline requirements and different approaches

So, what are the contents of these Environment’s repositories? In the Kubernetes
world, an environment can be a namespace inside a Kubernetes Cluster or a Kuberne-
tes Cluster itself. Let’s start with the most straightforward option, a “Kubernetes name-
space”. As you will see in figure 2.15, the contents of the Environment Repository are
just the definition of which services need to be present in the environment, the pipe-
line then can apply these Kubernetes manifests to the target namespace.

The following figure shows three different approaches that you can use to apply con-
figuration files to a Kubernetes Cluster. Notice that the three options all include an
environment-pipeline.yaml file with the definition of the tasks that need to be executed.

Figure 2.15 Three different approaches for defining environments’ configurations.

The first option (Simple layout) is just to store all the Kubernetes YAML files in a Git
repository and then the Environment Pipeline will just use kubectl apply -f *
against the configured cluster. While this approach is simple, there is one big draw-
back. If you have your Kubernetes YAML files for each service in the service repository,
then the environment repository will have these files duplicated and they can go out of
sync. Imagine if you have several environments, you will need to maintain all the copies
in sync, and it might become really challenging.

 71Environment Pipelines

The second option (Helm layout) is a bit more elaborate, now we are using Helm
to define the state of the cluster. You can use Helm dependencies to create a parent
chart that will include as dependencies all the services that should be present in the
environment. If you do so, the environment pipeline can use helm update. to apply the
chart into a cluster. Something that I don’t like about this approach is that you create
one Helm release per change and there are no separate releases for each service. The
prerequisite for this approach is to have every service package as a Helm Chart available
for the environment to fetch.

The third option is to use a project called “helmfile”(https://github.com/roboll/
helmfile), which was designed for this very specific purpose—to define environment
configurations. A helmfile allows you to declaratively define what Helm releases need
to be present in our cluster. This Helm releases will be created when we run helmfile
sync, having defined a helmfile containing the Helm releases that we want to have in
the cluster.

No matter if you use any of these approaches or other tools to do this, the expecta-
tion is clear. You have a repository with the configuration (usually one repository per
environment) and a pipeline will be in charge of picking up the configuration and
using a tool to apply it to a cluster.

It is common to have several environments (staging, QA, production), even allow-
ing teams to create their own environments on-demand for running tests or day-to-day
development tasks.

If you use the “one environment per namespace” approach, as shown in figure 2.16,
it is common to have a separate Git repository for each environment, because it helps to
keep access to environments isolated and secure. This approach is simple, but it doesn’t
provide enough isolation on the Kubernetes Cluster, because Kubernetes Namespaces
were designed for logical partitioning of the cluster, and in this case, the staging envi-
ronment will be sharing with the production environment the cluster resources.

Figure 2.16 One environment per Kubernetes namespace.

An alternative approach can be to use an entirely new cluster for each environment.
The main difference is isolation and access control. By having a cluster per environ-
ment, you can be stricter in defining who and which components can deploy and
upgrade things in these environments and have different hardware configurations for
each cluster, such as multi-region setups and other scalability concerns that might not

72 Part 2 Delivering Cloud-Native applications

make sense to have in your staging and testing environments. By using different clus-
ters, you can also aim for a multi-cloud setup, where different environments can be
hosted by different cloud providers.

Figure 2.17 shows how you can use the namespace approach for development envi-
ronments that will be created by different teams and then have separate clusters for
staging and production. The idea here is to have the staging and production cluster
configured as similarly as possible, so applications deployed behave in a similar way.

Figure 2.17 One environment per Kubernetes Cluster.

Okay, but how can we implement these pipelines? Should we implement these pipe-
lines using Tekton? In the next section, we will look at ArgoCD (https://argo-cd.
readthedocs.io/en/stable/), a tool that has encoded the environment pipeline logic
and best practices into a very specific tool for Continuous Deployment.

2.4 Environment Pipelines in Action
You can definitely go ahead and implement an Environment Pipeline as described
in the previous section using Tekton. This has been done in projects like Jenkins X
(https://jenkins-x.io), and I have done it too in this repository: https://github.com/
salaboy/from-monolith-to-k8s/blob/main/tekton/resources/environment-pipeline.
yaml. But nowadays, the steps for an Environment Pipeline are encoded in specialized
tools for Continuous Deployment like ArgoCD (https://argo-cd.readthedocs.io/en/
stable/).

https://jenkins-x.io
https://github.com/salaboy/from-monolith-to-k8s/blob/main/tekton/resources/environment-pipeline.yaml
https://github.com/salaboy/from-monolith-to-k8s/blob/main/tekton/resources/environment-pipeline.yaml
https://github.com/salaboy/from-monolith-to-k8s/blob/main/tekton/resources/environment-pipeline.yaml

 73Environment Pipelines in Action

In contrast with Service Pipelines, where we might need specialized tools to build
our artifacts depending on which technology stack we are using, Environment Pipe-
lines for Kubernetes are well standardized today under the GitOps umbrella.

Considering that we have all our artifacts being built and published by our Service
Pipelines, the first thing that we need to do is to create our environment Git repository,
which will contain the environment configuration, including the services that will be
deployed to that environment.

2.4.1 Argo CD

ArgoCD provides a very opinionated but flexible GitOps implementation. When using
ArgoCD, we will delegate all the steps required to continuously deploy software into
our environments. ArgoCD can out-of-the-box monitor a Git repository that contains
our environment(s) configuration and periodically apply the configuration to a live
cluster. This enables us to remove manual interactions with the target clusters which
reduces configuration drifts as git becomes our source of truths.

Using tools like ArgoCD allows us to declaratively define what we want to install
in our environments while ArgoCD is in charge of notifying us when something goes
wrong, or our clusters are out of sync.

ArgoCD is not limited to a single cluster, meaning that we can have our environment
living in separate clusters, even in different cloud providers (figure 2.18).

Figure 2.18 ArgoCD will sync environments configurations from Git to live clusters.

In the same way that we now have separate Service Pipelines for each service, we can
have separate repositories, branches, or directories to configure our environments.
ArgoCD can monitor repositories or directories inside repositories for changes to sync
our environments configurations.

74 Part 2 Delivering Cloud-Native applications

For this example, we will install ArgoCD in our Kubernetes Cluster and configure
our staging environment using a GitOps approach. For that, we need a Git repository
that serves as our source of truth.

For installing ArgoCD, I recommend you check their getting started guide that you
can find here: https://argo-cd.readthedocs.io/en/stable/getting_started/. This guide
installs all the components required for ArgoCD to work hence after finishing this guide
we should have all we need to get our Staging environment going. The installation also
guides you to install the argocd CLI (command line interface) which is sometimes very
handy. In the following sections, we will focus on the User Interface, but you can access
pretty much the same functionality using the CLI.

ArgoCD comes with a very useful user interface that lets you monitor at all times
how your environments and applications are doing and quickly find out if there are any
problems.

The main objective of this section is to replicate what we did in section 1.3 where
we installed and interacted with the application, but here we aim to fully automate the
process for an environment that will be configured using a git repository. Once again,
we will use Helm to define the environment configuration as ArgoCD provides an out-
of-the-box Helm integration.

NOTE ArgoCD used a different nomenclature than the one that we have been
using here. In ArgoCD you configure applications instead of environments. In
the following screenshots, you will see that we will be configuring an ArgoCD
application to represent our staging environment. Because there are no restric-
tions on what you can include in a Helm Chart, we will use a Helm Chart to con-
figure our Conference Platform application into this environment.

2.4.2 Creating an ArgoCD application

If you access the ArgoCD user interface, you will see right in the top left corner of the
screen the “+ New App” button (figure 2.19):

Figure 2.19 ArgoCD user interface: New application creation.

Go ahead and hit that button to see the Application creation form. Beside adding a
name and selecting a project where our ArgoCD application will live (we will select the
“default” project) and check the “Auto-Create Namespace” option (figure 2.20).

https://argo-cd.readthedocs.io/en/stable/getting_started/

 75Environment Pipelines in Action

Figure 2.20 New application parameters, manual sync, and auto-create namespace.

By associating our environment to a new namespace in our cluster, we can use the
Kubernetes RBAC mechanism to only allow administrators to modify the Kubernetes
resources located in that namespace. Remember that by using ArgoCD, we want to
make sure that developers don’t accidentally change the application configuration or
manually apply configuration changes to the cluster. ArgoCD will take care of sync-
ing the resources that are defined in a Git repository. So where is that Git repository?
That’s exactly what we need to configure next in figure 2.21.

Figure 2.21 ArgoCD application’s configuration repository, revision, and path.

As mentioned before, we will use a directory inside the https://github.com/salaboy/
from-monolith-to-k8s/ repository to define our staging environment. My recommen-
dation is for you to fork this repository so you can make any changes that you want to
the environment configuration.

The directory that contains the environment configuration can be found under
argocd/staging/. As you can see, you can also select between different branches and

https://github.com/salaboy/from-monolith-to-k8s/
https://github.com/salaboy/from-monolith-to-k8s/

76 Part 2 Delivering Cloud-Native applications

tags, allowing you to have fine-grain control of where the configuration is coming from
and how that configuration evolves over time.

The next step is to define where this environment configuration is going to be
applied by ArgoCD. As mentioned before, we can use ArgoCD to install and sync envi-
ronments in different clusters, but for this example we will use the same Kubernetes
Cluster where we installed ArgoCD, and because the namespace will be automatically
created, make sure to enter “staging” as the namespace so ArgoCD creates it for you
(figure 2.22).

Figure 2.22 Configuration destination, for this example, is the cluster where ArgoCD is installed.

Finally, because it makes sense to reuse the same configuration for similar environ-
ments, ArgoCD enables us to configure different parameters that will be specific to this
installation. Since we are using Helm and the ArgoCD user interface is smart enough
to scan the content of the repository/path that we have entered, it knows that it is
dealing with a Helm Chart. If we were not using a Helm Chart, ArgoCD allows us to set
up Environment Variables that we can use as parameters for our configuration scripts
(figure 2.23).

Figure 2.23 Helm configuration parameters for the staging environment.

As you can see in the previous image, ArgoCD also identified that there is a non-empty
values.yaml file inside the repository path that we provided, and it is automatically pars-
ing the parameters. We can add more parameters to the VALUES text box if we want to
override any other chart (or sub-charts) configurations.

For example, if you are configuring the application to run in a cloud provider, you
can add to the values section the following parameters:

 77Environment Pipelines in Action

fmtok8s-frontend:
 service:
 type: LoadBalancer

This configuration will automatically expose the “frontend” service to an external IP
that you can access from outside your cluster.

After we provided all this configuration, we are ready to hit the “Create” button at
the top of the form.

ArgoCD will create the application, but because we selected Manual Sync it will not
automatically apply the configuration to the cluster (figure 2.24).

Figure 2.24 Application created but not synced.

If you click into the application, you will drill down to the application full view, which
shows you the state of all the resources associated with the application (figure 2.25).

Figure 2.25 Application resources before sync.

On the top menu, you will find the “Sync” button, which allows you to parameter-
ize which resources to sync and some other parameters that can influence how the
resources are applied to the target namespace (figure 2.26).

78 Part 2 Delivering Cloud-Native applications

Figure 2.26 Application sync parameters.

As we mentioned before, if we want to use Git as our source of truth, we should be sync-
ing all the resources every time that we sync our configuration to our live cluster. For
this reason, the “all” selection makes a lot of sense, and it is the default and selected
option.

After a few seconds, you will see the resources being created and monitored by
ArgoCD (figure 2.27).

Figure 2.27 Our staging environment is Healthy, and all the services are up and running.

 79Environment Pipelines in Action

Depending on whether you are creating the environment in a local cluster or in a real
Kubernetes Cluster, you should access the application and interact with it.

Let’s recap a bit on what we have achieved so far:

¡	We installed ArgoCD into our Kubernetes Cluster. Using the provided ArgoCD
UI, we created a new ArgoCD application for our staging environment.

¡	We created our staging environment configuration in a Git repository hosted in
GitHub, which uses a Helm Chart definition to configure our Conference Plat-
form services and their dependencies (Redis and PostgreSQL).

¡	We synced the configuration to a namespace (staging) in the same cluster where
we installed ArgoCD.

¡	Most importantly, we removed the need for manual interaction against the target
cluster. In theory, there will be no need to execute kubectl against the staging
namespace.

For this setup to work, we need to make sure that the artifacts that the Helm Charts
(and the Kubernetes resources inside them) are available for the target cluster to pull.

Dealing with changes, the gitOPs way

Imagine now that the team in charge of developing the user interface (frontend)
decides to introduce a new feature. Hence, they create a pull request to the frontend
repository. Once this pull request is merged to the “main”, the team can decide to
create a new release for the service. The release process should include the creation of
tagged artifacts using the release number (figure 2.28). The creation of these artifacts
is the responsibility of the service pipeline, as we saw in previous sections.

Figure 2.28 Components to set up the staging environment with ArgoCD.

80 Part 2 Delivering Cloud-Native applications

Once we have the released artifacts, we can now update the environment. We can
update the staging environment by submitting a pull request to our GitHub repository
that can be reviewed before merging to the main branch, which is the branch that we
used to configure our ArgoCD application. The changes in the environment configu-
ration repository are usually going to be about:

¡	Bumping up or reverting a service version: For our example, this is as simple as chang-
ing the version of the chart of one or more services. Rolling back one of the
services to the previous is as simple as reverting the version number in the envi-
ronment chart or even reverting the commit that increased the version in the
first place. Notice that reverting commits is always recommended, because roll-
ing back to a previous version might also include configuration changes to the
services that, if they are not applied, old versions might not work.

¡	Adding or removing a service: Adding a new service is a bit more complicated,
because you will need to add both the chart reference and the service configura-
tion parameters. For this to work, the chart definition needs to be reachable by
the ArgoCD installation. Suppose the service(s)’ chart(s) are available, and the
configuration parameters are valid. In that case, the next time that we sync our
ArgoCD application, the new service(s) will be deployed to the environment.
Removing services is more straightforward, because the moment that you remove
the dependency from the environment Helm chart the service will be removed
from the environment.

¡	Tweaking charts parameters: Sometimes, we don’t want to change any service ver-
sion, and we might try to finetune the application parameters to accommodate
performance or scalability requirements, monitoring configurations, or the log
level for a set of services. These kinds of changes are also versioned and should be
treated as new features and bug fixes.

If we compare this with manually using Helm to install the application into the cluster,
we will quickly notice the differences. First, a developer might have the environment
configuration in her/his laptop, making the environment very difficult to replicate
from a different location. Changes to the environment configuration that are not
tracking using a version control system will be lost, and we will not have any way to ver-
ify if these changes are working in a live cluster or not. Configuration drifts are much
more difficult to track down and troubleshoot.

Following this automated approach with ArgoCD can open the door to more
advanced scenarios. For example, we can create Preview Environments (figure 2.29)
for our pull requests to test changes before they get merged and artifacts are released.
Jenkins X implements preview environments (https://jenkins-x.io/docs/build-test-
preview/preview/). Unfortunately, Jenkins X doesn’t use ArgoCD, but I can see this as a
potential feature to build to ArgoCD out of the box.

https://jenkins-x.io/docs/build-test-preview/preview/
https://jenkins-x.io/docs/build-test-preview/preview/

 81Service + Environment Pipelines summary

Figure 2.29 Preview environments for faster iterations.

Using preview environments can help to iterate faster and enable teams to validate
changes before merging them into the main branch of the project. Preview envi-
ronments can also be notified when the pull request is merged hence an automated
clean-up mechanism is straightforward to implement.

NOTE Another important detail to mention when using ArgoCD and Helm
is that compared with using Helm Charts manually, where Helm will create
release resources every time that we update a chart in our cluster, ArgoCD
will not use this Helm feature. ArgoCD takes the approach of using helm tem-
plate to render the Kubernetes resources YAML, and then it does apply the
output using kubectl apply. This approach relies on the fact that everything
is versioned in Git, and it also allows unifying different templating engines
for YAML. At the same time, it also allows ArgoCD to decorate the resulting
resources with ArgoCD custom annotations.

Finally, let’s see how service and environment pipelines interact to provide end-to-end
automation from code changes to deploying new versions into multiple environments.

2.5 Service + Environment Pipelines summary
Finally, let’s look at how Service Pipelines and Environment Pipelines connect. The
connection between these two pipelines happens via pull requests to repositories,
because the pipelines will be triggered when changes are submitted and merged (fig-
ure 2.30).

82 Part 2 Delivering Cloud-Native applications

Figure 2.30 A Service Pipeline can trigger an Environment Pipeline via a pull request.

The Service Pipeline, after all the artifacts were released and published, can send an
automatic pull request to the environment repository where the service needs to be
updated or deployed triggering the Environment Pipeline.

This simple but effective mechanism allows automated or manual pull requests to be
sent every time that we want to upgrade or deploy something into our environments.
For certain environments, such as staging or development environments, you can
automate the merging of the pull request containing new services versions enabling
changes on the service repositories to be propagated automatically to these low-risk
environments.

Now that our Service and Environment Pipelines are up and running, we can go all
the way from a source code change into one of our service repositories to deploying the
new artifacts generated by the Service Pipeline to one of our environments.

The more automated this process is the faster we can deliver new features, but we are
far from being ready. Even if we can continuously deploy new artifacts to our defined
environments most of the time, we need more flexibility and that is exactly where hav-
ing different release strategies in our toolbox becomes really important.

 83Release strategies in Kubernetes

The main reason to look into different release strategies is to recognize that some-
times having just a single version of our services running is not enough. Maybe we want
to test different approaches before deciding how to go about building a new feature, or
maybe we want to expose a feature to users in a certain region or maybe it makes a lot of
sense for different versions of the same service to deal with different requests.

In the next couple of sections (2.6 and 2.7), we will review what we have available out
of the box in Kubernetes and how tools like Argo Rollouts can help us to deal with more
advanced scenarios.

2.6 Release strategies in Kubernetes
Kubernetes comes with built-in mechanisms ready to deploy and upgrade your ser-
vices. Both deployment and StatefulSets resources orchestrate ReplicaSets to run a
built-in rolling update mechanism when the resource’s configurations change. Both
deployments and StatefulSets keep track of the changes between one version and the
next, allowing rollbacks to previously recorded versions.

Both deployments and StatefulSets are like cookie cutters; they contain the defini-
tion of how the container(s) for our service(s) needs to be configured and, based on
the replicas specified, will create that amount of containers. To route traffic to these
containers, we will need to create a service.

Using a service for each deployment is standard practice, and it is enough to enable
different services to talk to each other by using a well-known service name. But if we
want to allow external users (from outside our Kubernetes Cluster) to interact with
our services, we will need an Ingress resource (plus an ingress controller). The Ingress
resource will be in charge of configuring the networking infrastructure to enable exter-
nal traffic into our Kubernetes Cluster; this is usually done for a handful of services. In
general, not every service is exposed to external users (figure 2.31).

Figure 2.31 Kubernetes built-in resources for routing traffic.

Now, imagine what happens when you want to update the version of one of these exter-
nal-facing services. We can agree that it is pretty common that these services are user

84 Part 2 Delivering Cloud-Native applications

interfaces. And we can also agree that it will be pretty good if we can upgrade the ser-
vice without having downtime. The good news is that Kubernetes was designed with
zero-downtime upgrades in mind, and for that reason, both deployments and Stateful-
Sets come equipped with a rolling update mechanism.

If you have multiple replicas of your application pods (figure 2.32), the Kubernetes
Service resource acts as a load balancer. This allows other services inside your cluster to
use the Service name without caring about which replica they are interacting with (or
which IP address each replica has).

Figure 2.32 Kubernetes service acting as a load balancer.

To attach each of these replicas to the load balancer (Kubernetes Service) pool, Kuber-
netes uses a probe called “Readiness Probe” (https://kubernetes.io/docs/tasks/con-
figure-pod-container/configure-liveness-readiness-startup-probes/) to make sure that
the container running inside the pod is ready to accept incoming requests, in other
words, it has finished bootstrapping. In figure 2.32, Pod C is not ready yet; hence, it is
not attached to the service pool, and no request has been forwarded to this instance yet.

Now, if we want to upgrade to the “my-app:1.1” container image, we need to perform
some very detailed orchestration of these containers. Suppose we want to make sure
that we don’t lose any incoming traffic while doing the update. We need to start a new
replica using the my-app:1.1 image and make sure that this new instance is up and run-
ning and ready to receive traffic before we remove the old version. If we have multiple
replicas, we probably don’t want to start all the new replicas simultaneously, because
this will cause doubling up all the resources required to run this service.

We also don’t want to stop the old my-app:1.`replicas in one go. We need to guaran-
tee that the new version is working and handling the load correctly before we shut down
the previous version that was working fine. Luckily for us, Kubernetes automates all the
starting and stopping of containers using a rolling update strategy (https://kuberne-
tes.io/docs/tutorials/kubernetes-basics/update/update-intro/).

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

 85Release strategies in Kubernetes

2.6.1 Rolling updates

Deployments and StatefulSets come with these mechanisms built-in, and we need to
understand how these mechanisms work to know when to rely on them and their lim-
itations and challenges.

A rolling update consists of well-defined checks and actions to upgrade any number
of replicas managed by a deployment. Deployment resources orchestrate ReplicaSets to
achieve rolling updates, and figure 2.33 shows how this mechanism works.

Figure 2.33 Kubernetes deployments rolling updates.

Whenever you update a Deployment resource, the rolling update mechanism kicks
off by default. A new ReplicaSet is created to handle the creation of pods using the
newly updated configuration defined in spec.template. This new ReplicaSet will not
start all three replicas immediately, as this will cause a surge in resource consumption.
Hence, it will create a single replica, validate that it is ready, attach it to the service
pool, and then terminate a replica with the old configuration.

By doing this, the Deployment object guarantees three replicas are active at all times,
handling clients’ requests. Once Pod D is up and running and Pod A is terminated,
ReplicaSet 2 can create Pod E, wait for it to be ready, and then terminate Pod B. This
process repeats until all Pods in ReplicaSet 1 are drained and replaced with new ver-
sions managed by ReplicaSet 2. If you change the Deployment resource again, a new
ReplicaSet (ReplicaSet 3) will be created, and the process will repeat similarly.

86 Part 2 Delivering Cloud-Native applications

An extra benefit of using rolling updates is that ReplicaSets contain all the informa-
tion needed to create pods for a specific deployment configuration. If something goes
wrong with the new container image (in this example, my-app:1.1) we can easily revert
(rollback) to a previous version. You can configure Kubernetes to keep a certain num-
ber of revisions (changes in the deployment configuration), so changes can be rolled
back or rolled forward.

Changing a Deployment object will trigger the rolling update mechanism, and you
can check some of the parameters that you can configure to the default behavior here
(https://kubernetes.io/docs/concepts/workloads/controllers/deployment/). State-
fulSets have a different behavior, because the responsibility for each replica is related
to the state that is handled. The default rolling update mechanism works a bit differ-
ently. You can find the differences and a detailed explanation about how this work here
(https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/).

Check out the following commands to review the deployment revisions history
and doing rollbacks to previous versions at (https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/#checking-rollout-history-of-a-deployment):

> kubectl rollout history deployment/frontend
> kubectl rollout undo deployment/frontend --to-revision=2

If you haven’t played around rolling updates with Kubernetes, I strongly recommend
you create a simple example and try these mechanisms out. There are loads of exam-
ples online and interactive tutorials where you can see this in action.

2.6.2 Canary releases

Rolling updates kick in automatically, and they are performed as soon as possible if we
are using deployments; what happens when we want to have more control over when
and how we roll out new versions of our services?

Canary releases (https://martinfowler.com/bliki/CanaryRelease.html) are a tech-
nique used to test if a new version is behaving as expected before pushing it live in front
of all our live traffic.

While rolling updates will check that the new replicas of the service are ready to
receive traffic, Kubernetes will not check that the new version is not failing to do what it
is supposed to do. Kubernetes will not check that the latest versions perform the same
or better than the previous. Hence, we can be introducing issues to our applications.
More control on how these updates are doing is needed.

If we start with a deployment configured to use a Docker image called “my-app:1.0”,
have two replicas, and we label it with “app: myapp”, a service will route traffic as soon as
we use the selector “app:myapp”. Kubernetes will be in charge of matching the service
selectors to our pods (figure 2.34). In this scenario, 100% of the traffic will be routed to
both replicas using the same Docker image (my-app:1.0).

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://martinfowler.com/bliki/CanaryRelease.html

 87Release strategies in Kubernetes

Figure 2.34 Kubernetes service routes traffic to two replicas by matching labels.

Now imagine changing the configuration or having a new Docker image version
(maybe “my-app:1.1”). We don’t want to automatically migrate our Deployment V1 to
the new version of our Docker image. Alternatively, we can create a second Deploy-
ment (V2) resource and leverage the service “selector” to route traffic to the new ver-
sion (figure 2.35).

Figure 2.35 One service and two Deployments sharing the same labels.

By creating a second Deployment (using the same labels), we are routing traffic to
both versions simultaneously, and how much traffic goes to each version is defined by
the number of replicas configured for each deployment. By starting more replicas on
Deployment V1 than Deployment V2 you can control what percentage of the traffic will
be routed to each version. Figure 2.35 shows a 66%/34% (2 to 1 pods) traffic split
between V1 and V2. Then you can decrease the number of replicas for Deployment V1
and increase the replicas for V2 to slowly move towards V2. Notice that you don’t have
a fine-grained control over which requests go to which version—the service forwards
traffic in a round-robin fashion to all the matched pods.

88 Part 2 Delivering Cloud-Native applications

Because we have replicas ready to receive traffic at all times, there shouldn’t be any
downtime of our services when we do Canary releases.

A significant point to make about rolling updates and Canary releases is that they
depend on our services supporting traffic to be forwarded to different versions simul-
taneously without breaking. This usually means that we cannot have breaking changes
from version 1.0 to version 1.1 that will cause the application (or the service consumers)
to crash when switching from one version to the other. Teams making the changes need
to be aware of this restriction when using rolling updates and Canary releases, because
traffic will be forwarded to both versions simultaneously. For cases when two different
versions cannot be used simultaneously, and we need to have a hard switch between ver-
sion 1.0 and version 1.1 we can look at Blue/Green deployments.

2.6.3 Blue/Green deployments

Whenever you face a situation where you just cannot upgrade from one version to the
next and have users/clients consuming both versions simultaneously, you need a dif-
ferent approach. Canary deployments or rolling updates, as explained in the previous
section, will just not work. If you have breaking changes, you might want to try Blue/
Green deployments (https://martinfowler.com/bliki/BlueGreenDeployment.html).

Blue/Green deployments help us move from version 1.0 to version 1.1 at a fixed
point in time, changing how the traffic is routed to the new version without allowing the
two versions to receive requests simultaneously and without downtime.

Blue/Green deployments can be implemented using built-in Kubernetes resources
by creating two different deployments, as shown in figure 2.36.

Figure 2.36 Two Deployments using different labels.

In the same way, as we did with Canary releases, we start with a service and a Deploy-
ment. The first version of these resources is what we call “Blue”. For Blue/Green
deployments, we can create a separate Deployment (V2) resource to start and get ready
for the new version of our service when we have a new version. This new deployment
needs to have different labels for the pods that it will create, so the service doesn’t
match these pods just yet. We can connect to Deployment V2 pods by using kubectl
port-forward or running other in-cluster tests until we are satisfied that this new

https://martinfowler.com/bliki/BlueGreenDeployment.html

 89Release strategies in Kubernetes

version is working. When we are happy with our testing, we can switch from Blue to
Green by updating the ”selector” labels defined in the service resource (figure 2.37).

Figure 2.37 When the new version is ready, we switch the label from the service selector to match
version V2 labels.

Blue/Green deployments make a lot of sense when we cannot send traffic to both ver-
sions simultaneously, but it has the drawback of requiring both versions to be up at the
same time to switch traffic from one to the other. When we do Blue/Green deploy-
ments, it is recommended to have the same amount of replicas running for the new
version. We need to make sure that when traffic is redirected to the new version, this
version is ready to handle the same load as the old version.

The moment we switch the label selector in the service resource, 100% of the traffic
is routed to the new version, Deployment V1 pods’ stop receiving traffic. This is quite
an important detail as if some state was being kept in V1 Pods you will need to drain
state from the Pods, migrate and make this state available for V2 Pods. In other words,
if your application is holding state in-memory, you should write that state to persistent
storage so V2 Pods can access it and resume whatever work was being done with that
data. Remember that most of these mechanisms were designed for stateless workloads,
so you need to make sure that you follow these principles to make sure that things work
as smoothly as possible.

For Blue/Green deployments, we are interested in moving from one version to the
next at a given point in time, but what about scenarios when we want to actively test two
or more versions with our users at the same time, to then decide which one performs
better. Let’s look at A/B testing next.

2.6.4 A/B testing

It is a quite common requirement to have two versions of your services running at the
same time and we want to test these two versions to see which one performs better.
(https://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-ca-
nary-releases/). Sometimes you want to try a new user interface theme, place some UI
elements in different positions or new features added into your app and gather feed-
back from users to decide which one works best.

https://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/
https://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/

90 Part 2 Delivering Cloud-Native applications

To implement this kind of scenario in Kubernetes, you need to have two different
services pointing to two different deployments. Each deployment handles just one ver-
sion of the application/service. If you want to expose these two different versions out-
side the cluster, you can define an Ingress resource with two rules. Each rule will be in
charge of defining the external path or subdomain to access each service (figure 2.38).

Figure 2.38 Using two Ingress rules for pointing to A and B versions.

If you have your application hosted under the www.example.com domain, the Ingress
resource defined in figure 2.38 will direct traffic to Service A, allowing users to point
their browsers to www.example.com/b to access Service B. Alternatively, and depend-
ing on how you have configured your Ingress controller, you can also use subdomains
instead of path-based routing, meaning that to access the default version you can keep
using www.example.com, but to access Service B you can use a subdomain such as test.
example.com

I can hear you saying, what a pain, look at all the Kubernetes resources that I need to
define and maintain just to achieve something that feels basic and needed for everyday
operations. Let’s quickly summarize the limitations and challenges that we found so far,
so we can look at Argo Rollouts and how can it help us to implement these strategies in
a more streamlined way.

2.6.5 Limitations and complexities of using Kubernetes built-in building blocks

Canary releases, Blue/Green deployments, and A/B testing can be implemented using
built-in Kubernetes resources. But as you saw in the previous sections, creating differ-
ent deployments, changing labels, and calculating the number of replicas needed to
achieve percentage-based distribution of the requests is quite a major task and very
error-prone. Even if you use a GitOps approach as shown with ArgoCD, creating the
required resources with the right configurations is quite hard and it takes a lot of effort.

We can summarize the drawbacks of implementing these patterns using Kubernetes
building blocks as follows:

http://www.example.com
http://www.example.com/b
http://www.example.com

 91Reducing releases risk to improve delivery speed

¡	Manual creation of more Kubernetes resources, such as Deployments, services,
and Ingress rules to implement these different strategies can be error-prone
and cumbersome. The team in charge of implementing the release strategies
needs to understand deeply how Kubernetes behaves to achieve the desired
configuration.

¡	No automated mechanisms are provided out-of-the-box to coordinate and imple-
ment the resources required by each release strategy.

¡	Error-prone, because multiple changes need to be applied at the same time in
different resources for everything to work as expected.

¡	Suppose we notice a demand increase or decrease in our services. In that case,
we need to manually change the number of replicas for our deployments or
install and configure a custom autoscaler (more on this at the end of this chap-
ter). Unfortunately, if you set the number of replicas to 0, there will not be any
instance to answer requests, requiring you to have at least one replica running all
the time.

Out of the box, Kubernetes doesn’t include any mechanism to automate or facilitate
these release strategies, and that becomes a problem quite quickly if you are dealing
with a large number of services that depend on each other.

One thing is clear, your teams need to be aware of the implicit contracts imposed
by Kubernetes regarding 12-factor apps and how their services APIs evolve to avoid
downtime. Your developers need to know how Kubernetes’ built-in mechanisms work
in order to have more control over how your applications are upgraded.

If we want to reduce the risk of releasing new versions, we want to empower our
developers to have these release strategies available for their daily experimentation. In
the next section, we will look at Argo Rollouts, a set of tools and mechanisms built on
top of Kubernetes to simplify all the manual work described in the previous sections.

2.7 Reducing releases risk to improve delivery speed
We want to ensure that our operations teams have the right tools to implement the
introduced strategies for running our applications. This section covers Argo Rollouts
(https://argoproj.github.io/rollouts), a set of tools and mechanisms that facilitate a
progressive delivery (https://redmonk.com/jgovernor/2018/08/06/towards-pro-
gressive-delivery/) approach. In the following sections, we will go over how we can
implement canary releases and blue-green deployments using Argo Rollouts.

2.7.1 Introduction to Argo Rollouts

In most cases, you will see Argo Rollouts working hand-in-hand with ArgoCD. This
makes a lot of sense because we want to enable a delivery pipeline that removes the
need from manually interacting with our environments to apply configuration
changes. For the examples in the following sections, we will focus only on Argo Roll-
outs, but in real-life scenarios you shouldn’t be applying resources to the environments
using kubectl, because ArgoCD will do it for you.

https://argoproj.github.io/rollouts
https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/
https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/

92 Part 2 Delivering Cloud-Native applications

Argo Rollouts as defined in the project website is: “a Kubernetes controller and set
of CRDs which provide advanced deployment capabilities such as blue-green, canary,
canary analysis, experimentation, and progressive delivery features to Kubernetes”. As
we have seen with other projects, Argo Rollouts extend Kubernetes with the concepts of
Rollouts, Analysis, and Experimentations to enable progressive delivery features. The
main idea with Argo Rollouts is to leverage the Kubernetes built-in blocks without the
need of manually modifying and keeping track of Deployment and Services resources.

Argo Rollouts is composed of two big parts, the Kubernetes Controller that imple-
ments the logic to deal with our Rollouts definitions (also Analysis and Experimenta-
tions) and then a kubectl plugin that allows you to control how these rollouts progress,
enabling manual promotions and rollbacks. Using the kubectl Argo Rollouts plugin,
you can also install the Argo Rollouts Dashboard and run locally.

You can follow a tutorial on how to install Argo Rollouts on a local Kubernetes KinD
Cluster at https://github.com/salaboy/from-monolith-to-k8s/blob/main/argoroll-
outs/README.md

Let’s start by looking at how we can implement canary releases with Argo Rollouts to
see how it compares with using plain Kubernetes resources.

2.7.2 Argo Rollouts and Canary rollouts

First, we’ll begin by creating our first Rollout resource. With Argo Rollouts we will not
define deployments because we will delegate this responsibility to the Argo Rollouts
controller. Instead, we define an Argo Rollout resource that also provides our pod
specification (PodSpec in the same way that a deployment defines how pods needs to
be created).

For these examples, we will use only the Email Service from the Conference Platform
application, and we will not use Helm, because when using Argo Rollouts, we need to
deal with a different resource type which is currently not included in the application
Helm Charts. Argo Rollouts can work perfectly fine with Helm, but for these examples
we will create files to test how Argo Rollouts behave. You can look at an Argo Rollout
example using Helm at https://argoproj.github.io/argo-rollouts/features/helm/.

Let start by creating an Argo Rollout resource for the email service:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: email-service-canary
spec:
 replicas: 3
 strategy:
 canary:
 steps:
 - setWeight: 25
 - pause: {}
 - setWeight: 75
 - pause: {duration: 10}
 revisionHistoryLimit: 2
 selector:

https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/README.md
https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/README.md
https://argoproj.github.io/argo-rollouts/features/helm/

 93Reducing releases risk to improve delivery speed

 matchLabels:
 app: email-service
 template:
 metadata:
 labels:
 app: email-service
 spec:
 containers:
 - name: email-service
 image: ghcr.io/salaboy/fmtok8s-email-service:v0.1.0-native
 env:
 - name: VERSION
 value: v0.1.0
…

You can find the full file at https://github.com/salaboy/from-monolith-to-k8s/blob/
main/argorollouts/canary-release/rollout.yaml.

This Rollout resource manage the creation of pods using what we define inside the
“spec.template” and “spec.replicas” fields. But it adds the “spec.strategy” section, which
for this case is set to canary and defines the steps (amount traffic (weight) that will be
sent to the canary) in which the rollout will happen. As you can see, you can also define
a pause between each step. The “duration” is expressed in seconds and allows us to have
a fine-grained control on how the traffic is shifted to the canary version. If you don’t
specify the “duration” parameter, the rollout will wait there until manual intervention
happens. Let’s see how this rollout works in action.

Let’s apply the Rollout resource to our Kubernetes Cluster:

> kubectl apply -f rollout.yaml

Remember that if you are using Argo CD, instead of manually applying the resource,
you will push this resource to your Git repository that Argo CD is monitoring. Once
the resource is applied, we can see that a new Rollout resource is available by using
kubectl:

> kubectl get rollouts.argoproj.io
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
email-service-canary 3 3 3 3 11s

This looks pretty much like a normal Kubernetes deployment, but it is not. If you use
kubectl get deployments, you shouldn’t see any Deployment resource available
for our email-service. Argo Rollouts replace the use of Kubernetes deployments
by using Rollouts resources, which are in charge of creating and manipulating Rep-
licaSets, we can check using kubectl get rs that our Rollout has created a new
ReplicaSet:

> kubectl get rs
NAME DESIRED CURRENT READY AGE
email-service-canary-7f45f4d5c6 3 3 3 5m17s

https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/canary-release/rollout.yaml
https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/canary-release/rollout.yaml

94 Part 2 Delivering Cloud-Native applications

Argo Rollouts will create and manage these replica sets that we used to manage with
Deployment resources, but in a way that enable us to smoothly perform Canary
releases.

If you have installed the Argo Rollouts Dashboard you should see our Rollout in the
main page (figure 2.39).

Figure 2.39 Argo Rollouts dashboard.

As with deployments, we still need a service and an Ingress to route traffic to our ser-
vice from outside the cluster. If you create the following resources, you can start inter-
acting with the stable service and with the canary (figure 2.40).

Figure 2.40 Argo Rollouts Canary release Kubernetes resources.

 95Reducing releases risk to improve delivery speed

If you create a service and an ingress you should be able to query the Email Service
”info” endpoint by using the following http command:

http localhost/info

The output should look like this:

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 230
Content-Type: application/json
Date: Thu, 11 Aug 2022 09:38:18 GMT

{
 “name”: “Email Service”,
 “podId”: “email-service-canary-7f45f4d5c6-fhzzt”,
 “podNamepsace”: “default”,
 “podNodeName”: “dev-control-plane”,
 “source”: “https://github.com/salaboy/fmtok8s-email-service/releases/tag/

v0.1.0”,
 “version”: “v0.1.0”
}

The request shows the output of the info endpoint of our email service application.
Because we just created this Rollout resource, the Rollout Canary strategy mechanism
didn’t kick in just yet. Now if we want to update the Rollout spec.template section with
a new container image reference or changing environment variables a new revision will
be created and the canary strategy will kick in.

In a new terminal, we can watch the Rollout status before doing any modification, so
we can see the rollout mechanism in action when we change the Rollout specification.
If we want to watch how the rollout progress after we make some changes you can run in
a separate terminal the following command:

> kubectl argo rollouts get rollout email-service-canary --watch

You should see something like this:

Name: email-service-canary
Namespace: default
Status: Healthy
Strategy: Canary
 Step: 8/8
 SetWeight: 100
 ActualWeight: 100
Images: ghcr.io/salaboy/fmtok8s-email-service:v0.1.0-native (stable)
Replicas:
 Desired: 3
 Current: 3
 Updated: 3
 Ready: 3
 Available: 3

96 Part 2 Delivering Cloud-Native applications

NAME KIND STATUS AGE
INFO

⟳ email-service-canary Rollout Healthy 22h
└──# revision:1
 └──⧉ email-service-canary-7f45f4d5c6 ReplicaSet Healthy 22h

stable
 ├──□ email-service-canary-7f45f4d5c6-52j9b Pod Running 22h

ready:1/1
 ├──□ email-service-canary-7f45f4d5c6-f8f6g Pod Running 22h

ready:1/1
 └──□ email-service-canary-7f45f4d5c6-fhzzt Pod Running 22h

ready:1/1

Let’s modify the rollout.yaml file with the following two changes:

¡	Container image: spec.template.spec.containers[0].image from ghcr.io/
salaboy/fmtok8s-email-service:v0.1.0-native to ghcr.io/salaboy/

fmtok8s-email-service:v0.2.0-native. We have just increased the minor
version of the container image to v0.2.0-native.

¡	Environment Variable: Let’s also update the environment variable called VERSION
from “v0.1.0” to “v0.2.0”.

We can now reapply the rollout.yaml with the new changes; this will cause our Rollout
resource to be updated in the cluster:

> kubectl apply -f rollout.yaml

As soon as we apply the new version of the resource, the rollout strategy will kick in. If
you go back to the terminal where you are watching the rollout, you should see that a
new “# revision: 2” was created:

NAME KIND STATUS AGE INFO
⟳ email-service-canary Rollout Paused 22h
├──# revision:2
│ └──⧉ email-service-canary-7784fb987d ReplicaSet Healthy 18s canary
│ └──□ email-service-canary-7784fb987d-q7ztt Pod Running 18s ready:1/1

You can see that revision 2 is labeled as the ”canary” and the status of the rollout is “II
Paused” and only one pod is created for the Canary. So far, the Rollout has only exe-
cuted the first step:

strategy:
 canary:
 steps:
 - setWeight: 25
 - pause: {}

You can also check the status of the Canary Rollout in the dashboard (figure 2.41).

 97Reducing releases risk to improve delivery speed

Figure 2.41 A Canary release has been created with approximately 20% of the traffic routed to it.

The Rollout is currently paused waiting for manual intervention. We can now test that
our Canary is receiving traffic to see if we are happy with how the Canary is working
before we continue the rollout process. To do that, we can query the “info” endpoint
again to see that approximately 25% of the time we hit the Canary:

salaboy> http localhost/info
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 230
Content-Type: application/json
Date: Fri, 12 Aug 2022 07:56:56 GMT

{
 “name”: “Email Service”, # stable
 “podId”: “email-service-canary-7f45f4d5c6-fhzzt”,
 “podNamepsace”: “default”,
 “podNodeName”: “dev-control-plane”,
 “source”: “https://github.com/salaboy/fmtok8s-email-service/releases/tag/

v0.1.0”,
 “version”: “v0.1.0”
}

salaboy> http localhost/info
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 243
Content-Type: application/json
Date: Fri, 12 Aug 2022 07:56:57 GMT

{
 “name”: “Email Service - IMPROVED!!”, #canary
 “podId”: “email-service-canary-7784fb987d-q7ztt”,

98 Part 2 Delivering Cloud-Native applications

 “podNamepsace”: “default”,
 “podNodeName”: “dev-control-plane”,
 “source”: “https://github.com/salaboy/fmtok8s-email-service/releases/tag/

v0.2.0”,
 “version”: “v0.2.0”
}

We can see that one request hit our stable version and one went to the Canary.
Argo Rollouts is not dealing with traffic management in this case, the Rollout

resource is only dealing with the underlaying Replica Set objects and their replicas. You
can check the replicasets by running kubectl get rs:

> kubectl get rs
NAME DESIRED CURRENT READY AGE
email-service-canary-7784fb987d 1 1 1 33m
email-service-canary-7f45f4d5c6 3 3 3 23h

The traffic management between these different pods (Canary and stable pods) is
being managed by the Kubernetes Service resource; hence, in order to see our request
hitting both, the Canary and the stable version pods we need to go through the Kuber-
netes service. I am only mentioning this, because if you use kubectl port-forward
svc/email-service 8080:80, for example, you might be tempted to think that traffic
is being forwarded to the Kubernetes service (because we are using svc/email-ser-
vice), but kubectl port-forward resolves to a pod instance and connects to a sin-
gle pod, allowing you only hit the Canary or a stable pod. For this reason, we used an
Ingress, which will use the service to load balance traffic and hit all the pods that are
matching to the service selector.

If we are happy with the results, we can continue the rollout process by executing the
following command which promotes the canary to be the stable version:

> kubectl argo rollouts promote email-service-canary

Although we have just manually promoted the Rollout, the best practice would be uti-
lizing Argo Rollouts automated analysis steps which we will dig into in section 2.7.3.

If you take a look at the dashboard, you will notice that you can also promote the
rollout to move forward using the Button Promote in the Rollout. Promotion in this
context only means that the rollout can continue to execute the next steps defined in
the “spec.strategy” section:

 strategy:
 canary:
 steps:
 - setWeight: 25
 - pause: {}
 - setWeight: 75
 - pause: {duration: 10}

After the manual promotion, the weight is going to be set to 75% followed by a pause
of 10 seconds, to finally set the wait to 100%. At that point, you should see that revision
1 is being downscaled while progressively revision 2 is being upscaled to take all the
traffic:

 99Reducing releases risk to improve delivery speed

NAME KIND STATUS AGE INFO
⟳ email-service-canary Rollout Healthy 22h
├──# revision:2
│ └──⧉ email-service-canary-7784fb987d ReplicaSet Healthy 13m stable
│ ├──□ email-service-canary-7784fb987d-q7ztt Pod Running 13m ready:1/1
│ ├──□ email-service-canary-7784fb987d-zmd7v Pod Running 81s ready:1/1
│ └──□ email-service-canary-7784fb987d-hwwbk Pod Running 70s ready:1/1
└──# revision:1
 └──⧉ email-service-canary-7f45f4d5c6 ReplicaSet • ScaledDown 22h 22h

You can see this rollout progression live in the dashboard as well (figure 2.42).

Figure 2.42 The canary revision is promoted to be the stable version.

As you can see, revision 1 was downscaled to have zero pods and revision 2 is now
marked as the stable version. If you check the Replica Sets you will see the same output:

> kubectl get rs
NAME DESIRED CURRENT READY AGE
email-service-canary-7784fb987d 3 3 3 35m
email-service-canary-7f45f4d5c6 0 0 0 23h

We have successfully created, tested and promoted a canary release with Argo Rollouts!
Compared to what we saw in section 2.6.2 using two Deployment resources to imple-

ment the same pattern, with Argo Rollouts you have full control on how your Canary
release is promoted, how much time do you want to wait before shifting more traffic to
the canary and how many manual interventions steps do you want to add.

Let’s now jump to see how a Blue/Green deployment works with Argo Rollouts.

100 Part 2 Delivering Cloud-Native applications

2.7.3 Argo Rollouts and Blue/Green deployments

In section 2.6.3 we covered the advantages and the reasons behind why you would be
interested in doing a Blue/Green deployment using Kubernetes basic building blocks.
We have also seen how manual the process is and how these manual steps can open
the door for silly mistakes that can bring our services down. In this section, we look
at how Argo Rollouts allows us to implement Blue-Green deployments following the
same approach that we used previously for Canary deployments.

Let’s look at what our Rollout with a blueGreen strategy looks like:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: email-service-bluegreen
spec:
 replicas: 2
 revisionHistoryLimit: 2
 selector:
 matchLabels:
 app: email-service
 template:
 metadata:
 labels:
 app: email-service
 spec:
 containers:
 - name: email-service
 image: ghcr.io/salaboy/fmtok8s-email-service:v0.1.0-native
 env:
 - name: VERSION
 value: v0.1.0
 imagePullPolicy: Always
 ports:
 - name: http
 containerPort: 8080
 protocol: TCP
 strategy:
 blueGreen:
 activeService: email-service-active
 previewService: email-service-preview
 autoPromotionEnabled: false

You can find the full file at https://github.com/salaboy/from-monolith-to-k8s/blob/
main/argorollouts/blue-green/rollout.yaml.

Let’s apply this Rollout resource using kubectl or by pushing this resource to a Git
repository if you are using ArgoCD:

> kubectl apply -f rollout.yaml

We are using the same “spec.template” as before but now we are setting the strategy of
the rollout to be “blueGreen”, and because of that we need to configure the reference
to two Kubernetes services. One service will be the Active Service (Blue) which is serv-
ing production traffic and the other one is the Green service that we want to preview

https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/blue-green/rollout.yaml
https://github.com/salaboy/from-monolith-to-k8s/blob/main/argorollouts/blue-green/rollout.yaml

 101Reducing releases risk to improve delivery speed

but without routing production traffic to it. The autoPromotionEnabled: false is
required to allow for manual intervention for the promotion to happen. By default,
the rollout will be automatically promoted as soon as the new ReplicaSet is ready/
available.

You can watch the rollout running the following command or in the Argo Rollouts
Dashboard:

> kubectl argo rollouts get rollout email-service-bluegreen --watch

You should see a similar output to the one we saw for the Canary release:

Name: email-service-bluegreen
Namespace: default
Status: Healthy
Strategy: BlueGreen
Images: ghcr.io/salaboy/fmtok8s-email-service:v0.1.0-native (stable, active)
Replicas:
 Desired: 2
 Current: 2
 Updated: 2
 Ready: 2
 Available: 2

NAME KIND STATUS AGE INFO
⟳ email-service-bluegreen Rollout Healthy 11m
└──# revision:1
 └──⧉ email-service-bluegreen-54b5fd4d7c ReplicaSet Healthy 10m stable,active
 ├──□ email-service-bluegreen-54b5fd4d7c-gvvwt Pod Running 10m ready:1/1
 └──□ email-service-bluegreen-54b5fd4d7c-r9dxs Pod Running 10m ready:1/1

And in the dashboard, you should see something like figure 2.43.

Figure 2.43 Blue/Green deployment in the Argo Rollout dashboard.

We can interact with revision #1 using an Ingress to the service and then sending a
request like the following:

102 Part 2 Delivering Cloud-Native applications

> http localhost/info

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 233
Content-Type: application/json
Date: Sat, 13 Aug 2022 08:46:44 GMT

{
 “name”: “Email Service”,
 “podId”: “email-service-bluegreen-54b5fd4d7c-jnszp”,
 “podNamepsace”: “default”,
 “podNodeName”: “dev-control-plane”,
 “source”: “https://github.com/salaboy/fmtok8s-email-service/releases/tag/

v0.1.0”,
 “version”: “v0.1.0”
}

If we now make changes to our Rollout “spec.template”, the blueGreen strategy will
kick in. For this example, the expected result that we want to see is that the preview-
Service is now routing traffic to the second revision that is created when we save the
changes into the rollout.

Let’s modify the rollout.yaml file with the following two changes:

¡	Container image: spec.template.spec.containers[0].image from ghcr.io/
salaboy/fmtok8s-email-service:v0.1.0-native to ghcr.io/salaboy/

fmtok8s-email-service:v0.2.0-native. We have just increased the minor
version of the container image to v0.2.0-native.

¡	Environment variable: Let’s also update the Environment Variable called VER-
SION from v0.1.0 to v0.2.0.

We can now reapply the rollout.yaml with the new changes, this will cause our Rollout
resource to be updated in the cluster:

> kubectl apply -f rollout.yaml

As soon as we save these changes, the rollout mechanism will kick in and it will auto-
matically create a new Replica Set with revision 2 including our changes. Argo Rollouts
for Blue/Green deployments will use selectors to route traffic to our new revision by
modifying the previewService that we have referenced in our Rollout definition.

If you describe the “email-service-preview” Kubernetes service, you will notice that a
new selector was added:

> kubectl describe svc email-service-preview
Name: email-service-preview
Namespace: default
Labels: <none>
Annotations: argo-rollouts.argoproj.io/managed-by-rollouts: email-service-bluegreen
Selector: app=email-service,rollouts-pod-template-hash=64d9b549cf

 103Reducing releases risk to improve delivery speed

Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.96.27.4
IPs: 10.96.27.4
Port: http 80/TCP
TargetPort: http/TCP
Endpoints: 10.244.0.23:8080,10.244.0.24:8080
Session Affinity: None
Events: <none>

This selector is matching with the revision 2 Replica Set that is created when we made
the changes:

> kubectl describe rs email-service-bluegreen-64d9b549cf
Name: email-service-bluegreen-64d9b549cf
Namespace: default
Selector: app=email-service,rollouts-pod-template-hash=64d9b549cf
Labels: app=email-service
 rollouts-pod-template-hash=64d9b549cf
Annotations: rollout.argoproj.io/desired-replicas: 2
 rollout.argoproj.io/revision: 2
Controlled By: Rollout/email-service-bluegreen
Replicas: 2 current / 2 desired
Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=email-service
 rollouts-pod-template-hash=64d9b549cf

By using a selector and labels, the Rollout with the blueGreen strategy is handling
these links automatically for us. This avoids us manually creating these labels and mak-
ing sure they match.

You can check now that there are two revisions (and ReplicaSets) with two pods each:

NAME KIND STATUS AGE INFO
⟳ email-service-bluegreen Rollout Paused 22h
├──# revision:2
│ └──⧉ email-service-bluegreen-64d9b549cf ReplicaSet Healthy 22h preview
│ ├──□ email-service-bluegreen-64d9b549cf-glkjv Pod Running 22h ready:1/1,restarts:4
│ └──□ email-service-bluegreen-64d9b549cf-sv6v2 Pod Running 22h ready:1/1,restarts:4
└──# revision:1
 └──⧉ email-service-bluegreen-54b5fd4d7c ReplicaSet Healthy 22h stable,active
 ├──□ email-service-bluegreen-54b5fd4d7c-gvvwt Pod Running 22h ready:1/1,restarts:4
 └──□ email-service-bluegreen-54b5fd4d7c-r9dxs Pod Running 22h ready:1/1,restarts:4

In the Argo Rollouts dashboard, you should see the same information (figure 2.44).

104 Part 2 Delivering Cloud-Native applications

Figure 2.44 Argo Rollout dashboard Blue and Green revisions are up.

We can now interact with the Preview Service (revision #2) using a different path in
our Ingress:

> http localhost/preview/info
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 246
Content-Type: application/json
Date: Sat, 13 Aug 2022 08:50:28 GMT

{
 “name”: “Email Service - IMPROVED!!”,
 “podId”: “email-service-bluegreen-64d9b549cf-8fpnr”,
 “podNamepsace”: “default”,
 “podNodeName”: “dev-control-plane”,
 “source”: “https://github.com/salaboy/fmtok8s-email-service/releases/tag/

v0.2.0”,
 “version”: “v0.2.0”
}

Once we have the preview (Green) service running the Rollout is in a Paused state
until we decide to promote it to be the stable service (figure 2.45).

Figure 2.45 Blue/Green deployment using Kubernetes resources.

 105Reducing releases risk to improve delivery speed

Because we now have two services, we can access both at the same time and make sure
that our Green (preview-service) is working as expected before promoting it to be our
main (active) service. While the service is in preview, other services in the cluster can
start routing traffic to it for testing purposes, but to route all the traffic and replace
our blue service with our green service, we can use once again the Argo Rollouts pro-
motion mechanism from the terminal using the CLI or from the Argo Rollouts dash-
board. Try to promote the Rollout using the dashboard now instead of using kubectl.

Notice that a 30-second delay is added by default before the scaling down of our revi-
sion #1 (this can be controlled using the property called: scaleDownDelaySeconds),
but the promotion (switching labels to the services) happens the moment we hit the
“PROMOTE” button (figure 2.46).

Figure 2.46 Green service promotion using the Argo Rollouts dashboard (delay of 30 seconds).

This promotion only switches labels to the services resources, which automatically
changes the routing tables to now forward all the traffic from the Active Service to our
Green Service (preview).

If we make more changes to our Rollout, the process will start again, and the preview
service will point to a new revision which will include these changes.

Now that we have seen the basics of Canary releases and Blue/Green deployments
with Argo Rollouts, let’s take a look at more advanced mechanisms provided by Argo
Rollouts.

2.7.4 Argo Rollouts analysis for progressive delivery

So far, we have managed to have more control for our different release strategies, but
where Argo Rollouts really shine is by providing the AnalysisTemplate CRD that lets

106 Part 2 Delivering Cloud-Native applications

us make sure that our Canary and Green services are working as expected when pro-
gressing through our rollouts. These analyses are automated and serve as gates for our
Rollouts to not progress unless the analysis probes are successful.

These analyses can use different providers to run the probes, ranging from Pro-
metheus to DataDog, New Relic among others, providing maximum flexibility to define
these automated tests against the new revisions of our services (figure 2.47).

Figure 2.47 Argo Rollouts and Analysis working together to make sure that our new revisions are sound
before shifting more traffic to them.

For Canary releases, analysis can be triggered as part of the step definitions, meaning
between arbitrary steps, to start at a predefined step or for every step defined in the
Rollout.

An AnalysisTemplate using the Prometheus Provider definition look like this:

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
 name: success-rate
spec:
 args:
 - name: service-name
 metrics:
 - name: success-rate
 interval: 5m
 # NOTE: prometheus queries return results in the form of a vector.
 # So it is common to access the index 0 of the returned array to obtain

the value
 successCondition: result[0] >= 0.95
 failureLimit: 3

 107Reducing releases risk to improve delivery speed

 provider:
 prometheus:
 address: http://prometheus.example.com:9090
 query: <Prometheus Query here>

Then in our Rollout we can reference this template and define when a new Analysis-
Run will be created, for example if we want to run the first analysis after step 2:

strategy:
 canary:
 analysis:
 templates:
 - templateName: success-rate
 startingStep: 2 # delay starting analysis run until setWeight: 40%
 args:
 - name: service-name
 value: email-service-canary.default.svc.cluster.local

As mentioned before, the analysis can be also defined as part of the steps, in that case
our steps definition will look like this:

strategy:
 canary:
 steps:
 - setWeight: 20
 - pause: {duration: 5m}
 - analysis:
 templates:
 - templateName: success-rate
 args:
 - name: service-name
 value: email-service-canary.default.svc.cluster.local

For Rollouts using a Blue/Green strategy, we can trigger analysis runs pre- and
post-promotion (figure 2.48).

Figure 2.48 Argo Rollouts with blueGreen deployments, and PrePromotionAnalysis in action.

108 Part 2 Delivering Cloud-Native applications

Here is an example of PrePromotionAnalysis configured in our Rollout:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
 name: email-service-rollout
spec:
...
 strategy:
 blueGreen:
 activeService: email-service-active
 previewService: email-service-preview
 prePromotionAnalysis:
 templates:
 - templateName: smoke-tests
 args:
 - name: service-name
 value: email-service-preview.default.svc.cluster.local

For PrePromotion tests, a new AnalysisRun a test before switching traffic to the Green
Service, and only if the test is successful the labels will be updated. For PostPromotion,
the test will run after the labels were switched to the Green Service, and if the Analy-
sisRun fails the rollout can revert back the labels to the previous version automatically,
this is possible because the Blue Service will not be downscaled until the AnalysisRun
finishes.

I recommend you check the Analysis section of the official documentation because it
contains a detailed explanation of all the providers and knobs that you can use for mak-
ing sure that your Rollouts go smoothly: https://argoproj.github.io/argo-rollouts/
features/analysis/.

2.7.5 Argo Rollouts and traffic management

Finally, it is worth mentioning that so far Rollouts have used the number of pods avail-
able to approximate the weights that we define for Canary releases. While this is a
good start and a simple mechanism, sometimes we need more control on how traf-
fic is routed to different revisions. We can leverage the power of service meshes and
load balancers to write more precise rules about which traffic is routed to our Canary
releases.

Argo Rollouts can be configured with different trafficRouting rules, depending on
which traffic management tool we have available in our Kubernetes Cluster. Argo Roll-
outs today supports Istio, AWS ALB Ingress Controller, Ambassador Edge Stack, Nginx
Ingress Controller, Service Mesh Interface (SMI), and Traefik Proxy, among others. As
described in the documentation, if we have more advanced traffic management capa-
bilities, we can implement techniques like:

¡	Raw percentages (i.e., 5% of traffic should go to the new version while the rest
goes to the stable version).

¡	Header-based routing (i.e., send requests with a specific header to the new
version).

https://argoproj.github.io/argo-rollouts/features/analysis/
https://argoproj.github.io/argo-rollouts/features/analysis/

 109Reducing releases risk to improve delivery speed

¡	Mirrored traffic, where all the traffic is copied and send to the new version in par-
allel (but the response is ignored).

By using tools like Istio in conjunction with Argo Rollouts, we can enable developers
to test features that are only available to request setting specific headers, or to forward
copies of the production traffic to the canaries to validate that are behaving as they
should.

Here is an example of configuring a Rollout to mirror 35% of the traffic to the canary
release which has a 25% weight:

apiVersion: argoproj.io/v1alpha1
kind: Rollout
spec:
 …
 strategy:
 canary:
 canaryService: email-service-canary
 stableService: email-service-stable
 trafficRouting:
 managedRoutes:
 - name: mirror-route
 istio:
 virtualService:
 name: email-service-vsvc
 steps:
 - setCanaryScale:
 weight: 25
 - setMirrorRoute:
 name: mirror-route
 percentage: 35
 match:
 - method:
 exact: GET
 path:
 prefix: /
 - pause:
 duration: 10m
 - setMirrorRoute:
 nam“: “mirror-ro”te” # removes mirror based traffic route

As you can see, this simple example already requires knowledge around Istio Virtual
Services and a more advanced configuration that is out of scope for this section. I
strongly recommend checking the Istio in Action book by Christian Posta and Rinor
Maloku (https://www.manning.com/books/istio-in-action) if you are interested in
learning about Istio (figure 2.49).

110 Part 2 Delivering Cloud-Native applications

Figure 2.49 Traffic Mirroring to a Canary release using Istio.

Something that you should know is that when using “trafficManagement” features, the
Rollout Canary strategy will behave differently than when we are not using any rules.
More specifically, the Stable version of the service will not be downscaled when going
through a Canary release rollout. This ensures that the Stable service can handle 100%
of the traffic, the usual calculations apply for the Canary replica count.

I strongly recommend checking the official documentation (https://argoproj.
github.io/argo-rollouts/features/traffic-management/) and following the examples
there, because the rollouts needs to be configured differently depending on the Service
Mesh that you have available.

In the last two sections (2.6 and 2.7) we have seen both what can be achieved with
basic Kubernetes building blocks and how Argo Rollouts simplify the lives of teams
releasing new versions of their applications to Kubernetes. It is my firm belief that
sooner or later in your Kubernetes journey you will face delivery challenges and having
these mechanisms available inside your clusters will increase your confidence to release
more software faster; hence, I don’t take the evaluation of these tools lightly. Make sure
you plan time for your teams to research and choose which tools they will use to imple-
ment these release strategies. There are many software vendors who can assist you and
provide recommendations too.

 111Summary

2.8 Summary
We started this report by looking at what Cloud-Native means in the context of
Kubernetes and the reason behind continuously delivering new value to our users by
leveraging the tools that have been described here. We used a Walking Skeleton to
demonstrate the main challenges behind creating, building, packaging, and deploying
these distributed applications.

Kubernetes is a great platform, but without having the right tools in place, it can be
daunting and challenging for teams to be productive. I hope by the end of this report,
you find yourself with enough practical experience to set up these tools for your teams
and research the CNCF Landscape to look for more specific projects that can help you
in your journey to the Cloud.

You can always refer to the step-by-step tutorials that you can find in this repository
at https://github.com/salaboy/from-monolith-to-k8s/. I will do my best to keep these
tutorials updated, and I am sure that I will keep adding more tools related to platform
building and Continuous Delivery. As with all the work that I do, these repositories are
under the Apache License V2, and you are more than welcome to contribute, provide
feedback, and spread the word about them as much as you want.

In this report, we covered tools like Helm, KinD, Argo CD, Argo Rollouts, Tekton,
and Argo Workflows, but in real life you will need to make your own decisions based
on the problems that you are trying to solve and the tools that you are already using.
One very important takeaway from this report is to make sure that whatever tools you
choose, you understand the problems that these tools were designed to solve and how
they match your technology stack decisions. The Kubernetes ecosystem is growing at a
really fast pace, hence getting involved with open-source projects can provide you (and
your teams) with an extra edge to understand how tools are being designed and where
the entire ecosystem is going.

See you all out there in these open-source communities, GitHub issues, and pull
requests! Remember that if you want to get in touch, you can always drop me a direct
message in Twitter @Salaboy or a comment in my blog at https://salaboy.com.

https://github.com/salaboy/from-monolith-to-k8s/

