
13 Key Features Every Modern
CI/CD Tool Should Contain

1

DevOps methodologies have become a huge staple of the Software Development
Lifecycle. As such, more and more companies have been adopting the need for
Continuous Integration/Continuous Delivery (CI/CD) tools. Building a successful CI/CD
workflow can be a tedious process that requires your team to participate in a large amount
of preparation and planning — but it doesn’t have to be that way.

There are a growing number of CI/CD tools available on the market today, so much that
your team may be overwhelmed in narrowing down what to use. In this blog post, we hope
to help simplify your choices by breaking down the 13 key features every modern CI/CD
tool should contain:

1. Docker-based Architecture Right From the Start

2. Cloud and Version Control Agnosticism

3. Pipeline Creation with Standardized Definitions

4. Graphical Pipeline View

5. Parallel Steps

6. Standardized Plugin Mechanism (Docker-based)

7. Configuration Options Through Both Code and UI

8. Reusable Pipelines for Microservices

9. Live Pipeline Debugging with Breakpoints

10. Native Support for Kubernetes, Helm, and Docker

11. Saas, On-prem, and Hybrid Installation Methods

12. Zero Config, Distributed Caching

13. Monorepo Support

2

Docker-based Architecture Right From the Start

A modern CI/CD tool should have Docker-based architecture since its inception. Many
people consider “Docker-based” to mean the usage of Docker as a deployment package,
but the usage of Docker-based in this sense means using Docker for the build tooling itself.
Traditionally, in VM-based CI/CD tools, you had to make sure all of your build tooling (and
correct versions) were pre-installed on the virtual machine in order to run the pipeline.
Tools were static and used for all pipelines.

With Docker-based CI/CD tooling, only Docker needs to be pre-installed on your build
nodes — nothing else. Your build tools are now isolated to each pipeline, and you can
dynamically pop them in or out based on your needs.

Dockerizing the CI/CD architecture itself allows your team to create and reuse building
blocks to make pipeline creation much faster and easier, cutting the amount of time and
cost it takes to get your CI/CD builds up and running:

• Docker is the de-facto standard for delivery and not tied to any vendor

• Build, share, and run your steps/images across any cloud provider, OS, language/
framework

• Any Docker image is a potential step for a pipeline

• As long as you have a Docker image, you can use it as a part of your pipeline tooling

• Create pipelines quickly from existing images

• Extending a pipeline step requires Docker knowledge and nothing more

• No need for Dev teams to understand the underlying infrastructure

While a number of tools have strategically shifted to a “Docker-based” approach,
Codefresh o!ered this functionality right from the start from the heart of its architecture.
All Codefresh pipelines use Docker images in one form or another, whether it be by using
them as runtime tools, or
creating them as deployment
artifacts. Codefresh has
always required that all
tools used in a pipeline be
Dockerized, and each step in
the pipeline runs in the context
of its own Docker image:

3

Cloud and Version Control Agnosticism

Many CI/CD tools limit which providers you can use for both version control and cloud
providers. A good CI/CD tool should be cloud and version control agnostic — it should:

• Play well with any Git or Cloud provider

• Give you a great amount of flexibility on how you choose to version control and deploy
your code

• Have no vendor lock-in

Many tools do not o!er such agnosticism with version control, and are tied to their own
version control systems. The same can be said for Cloud agnosticism as well. Some CI/CD
tools from major Cloud Service Providers can be examples of this.

One of the biggest advantages of Codefresh is the fact that it o!ers native support (and
great documentation!) for any Git or Cloud provider, giving you a great amount of flexibility
on how you build your pipelines. With Codefresh, there is no vendor-lock in and you are
free to choose the tools best-suited for your needs.

Oftentimes, companies use multiple di!erent cloud and git providers, both on-premise and
in the cloud, so o!ering cloud and git agnosticism is essential.

4

Pipeline Creation with Standardized Definitions

Using a standardized YAML approach for programmatic deployments is important. Some
tools o!er non-standardized approaches, o!ering pipeline configuration in di!erent modes,
such as scripted, procedural Groovy pipelines. Scripted pipelines do not provide a strict
and pre-defined structure, which introduces a lot of complexity when it comes to building
out your pipelines, making them complicated and hard to manage. In addition, scripted
pipelines force operators into learning a full programming language just to pick up and
implement the CI/CD system.

Codefresh simplifies this by o!ering only one mode for constructing pipelines: declarative
YAML. This keeps your pipelines (and the documentation supporting it):

• Standardized and easy to pick up and implement, speeding up the time it takes to get
from source code to deployment.

• Managed via source file and able to go through a standard PR / code review process,
meaning the state of your code and your pipeline are always aligned

• Reusable, as YAML can be used as building blocks to distribute to other projects

In addition to a one-size-fits-all approach to pipeline configuration, a modern CI/CD tool
should allow for easy, global, one-time authentication/integrations for Docker registries and
Kubernetes clusters.

With a modern CI/CD tool, the less manual configurations, the better, as it:

• Enables your DevOps team to get up and running, focusing on building out their
pipelines as opposed to dealing with messy configuration options

• Reduce the amount of time it takes to administer authentication options within your
pipeline

• Makes CI/CD easy for everyone to use without requiring everyone to learn a new
language to create pipelines

Codefresh provides this capability automatically to all pipelines. You authenticate one
time through your global account settings to Docker registries (without the need to
run docker login), Kubernetes clusters (without the need to run kubectl commands),
Secret repositories, Helm repositories, and so on — once you configure this one time,
authentication through the pipeline is all handled automatically for you. deploying them
further apart from each other.

5

Graphical Pipeline View

Any modern CI/CD tool should provide an intuitive user interface, complete with a
graphical pipeline view of your workflow. Most CI/CD tools o!er this, but the user interface/
experience can be lacking in critical build information and modern design principles.

At Codefresh, we provide a user-friendly experience when it comes to viewing your
pipelines graphically. Your pipeline steps can even be organized into di!erent stages —
they are completely customizable. You define as many stages as you wish, and define
what steps are grouped under each stage. Our graphical pipeline view provides:

• Any sort of stakeholder an overview of your pipeline and what is occurring at each
step

• The YAML, logs, state, and metrics of the build as a whole or as a part of any particular
step

Getting a holistic view of your pipeline is extremely important, the larger and more complex
your pipeline gets.

The ability to see the metrics of your pipeline allows you to instantly view bottlenecks and
optimize slow build times without any guesswork.

6

Parallel Steps

Most common pipeline steps run sequentially, meaning each step in the pipeline is
executed individually, one at a time. The ability to run steps in parallel as opposed to
sequentially is a very important feature of any modern CI/CD tool, as it can dramatically
decrease the amount of time it takes for your pipeline to complete.

For example, consider a sequential pipeline with 5 steps, each step running its own set of
tests: unit tests, fast tests, slow tests, smoke tests, and integration tests. For simplicity, let’s
say each set of tests takes 1 minute to run. In a sequential pipeline, the build time would be
a total of 5 minutes. Parallelizing all of these steps would cut the time it takes the pipeline
to run down to 1 minute, reducing the time your engineers wait for a build to finish. CI/CD
tools that o!er parallelization are beneficial in:

• Cost e"ciency

• Running steps in parallel makes the cost per step (the amount of time it takes for the
entire build process to complete) much lower

• CI/CD optimization / faster feedback

• Run testing steps as soon as a developer pushes a new commit (throughout the
entire software development lifecycle), giving your team quick feedback

Most modern tools o!er this capability, but only at a basic level of splitting a single task into
parallel tasks Codefresh takes it one step further, by allowing you to create a custom graph
of dependencies between parallel steps, giving you maximum flexibility on any complex
flow.

For example, at Codefresh, to run steps in parallel, we support two modes: one for
parallelizing your entire pipeline, and one for parallelizing only specific portions of it.

The advantage of parallelism within Codefresh is that we o!er support for an advanced
parallel mode with full step definitions and their explicit dependencies, allowing for
complex fan-in, fan-out configurations as seen in the diagram above.

7

Standardized Plugin Mechanism (Docker-based)

Many CI/CD tools support a marketplace of plugins, but the method of creating one is not
standardized. A modern CI/CD tool should have a standardized, Docker-based mechanism
for plugin creation. This allows:

• Developers to create their own plugins without special knowledge of the CI/CD tool’s
API or specific language used for that platform.

• Every team member to create plugins in a standardized environment, i.e. solving the
issue of “it works on my machine”

• Reuse of existing plugins from other teams

• The ability to write a plugin in any programming language, as long as it is packaged in
a Docker image

• Any public Dockerhub image is a potential pipeline step within your plugin

At the base of every plugin,
Codefresh uses a Docker image,
simplifying the plugin creation
process. And, since Codefresh has
a Docker-based build architecture
from its heart, you can easily plug-
and-play with any plugin from our
marketplace into your pipelines.

Take a look at any of our plugins
(they are all open-source!) and you
will see that they are composed
of a Dockerfile, making it easy for
developers to extend and add
their own, without any background
knowledge of our API. In addition,
plugins are scoped per pipeline,
so you have no dependency hell to monitor between plugins, or a need to monitor which
versions are compatible with your platform version.

8

Configuration Options Through Both Code and UI

A modern CI/CD tool should have both Configuration as Code as well as Graphical
User Interface options. Many tools o!er configuration through code, but lack in UI
configurations, or vise versa. Allowing a means of both o!ers:

• Flexibility, in the event you have someone on your team who wants to take a less-
technical approach to managing their configurations

• Versioning of changes

• Configuration as code allows configuration to be stored as code in your version control
system, allowing you to easily track changes by whom and when

Codefresh o!ers both types of configurations for many options. For example, we o!er
an in-line editor you can use directly from the UI to perform dry-runs of your pipeline, and
once your pipeline is ready, you can move it to source control and use it from there. The
pipeline can even be in a di!erent repository from your application’s source, allowing for
maximum flexibility.

Moreover, you can define variables as a part of the YAML itself, or, we give you the
flexibility to define these variables as a part of the pipeline settings, through the UI:

Developers and beginners
tend to work with the
GUI, while Ops teams and
advanced users tend to work
with configuration as code.
O!ering a means to support
both keeps teams happy and
is vital to any organization.

9

Reusable Pipelines for Microservices

A modern CI/CD tool should have a mechanism in place to reuse pipelines for Microservice
applications. Most microservices have a similar pipeline pattern in place. Since those
similarities exist, it should be possible to reuse a single pipeline across many microservices.

One of the ground-breaking features of Codefresh is that pipelines are not bound to
specific Git repositories, meaning you can re-use them amongst di!erent microservices by
just adding more triggers. This allows for simplified:

• Pipeline construction

• You have only one pipeline to build and it acts as one, reusable unit

• Project construction

• Any time a new microservice is added, you only need to add a new trigger. No need
to rebuild the existing pipeline

• Pipeline enforcement

• Updating a single pipeline a!ects all other microservices associated with it, so you
don’t have to hunt down which pipeline a!ected what

Codefresh o!ers a variety of triggers, including Git, Dockerhub, Azure, Quay, Artifactory,
Cron, and the Codefresh API/CLI.

Take for example, the above diagram. The pipeline process is the same for all
microservices, and four microservices already exist (and thus, four triggers). When a new
microservice is created, the Ops team simply adds a new trigger to the existing pipeline,
and the work is finished. This speeds up the amount of time needed to create a new
project, compared to other solutions where bootstrapping a new microservice can take
days to complete.

10

Live Pipeline Debugging with Breakpoints

The ability to troubleshoot a failed build is absolutely essential when it comes to an
e"cient CI/CD tool. Many CI/CD tools o!er simple debugging with SSH, enabling users to
debug a failed build from the builder node.

Codefresh takes a unique approach to pipeline
debugging, on the other hand, by being the
first ever CI/CD solution to make pipeline
debugging live:

• Live debugging is more user-friendly and
the way most developers are already
accustomed to debugging their code

• It makes the CI/CD creation process easier
for engineers to test, troubleshoot, and fix
their pipelines

Similar to the way developers debug applications live in their IDEs, you can place
breakpoints within your pipeline steps to inspect the live states of your build.

Once the pipeline pauses at your breakpoint, you have the ability to run any commands
you wish to understand the state of your container, making creating, modifying, and testing
your pipelines much easier.

11

Native Support for Kubernetes, Helm, and Docker

This is a growing area of interest, as many companies wish to adopt cloud native
approaches. Many tools o!er integrations with Kubernetes, Helm, and Docker through
the use of plugins, but few have native support for all three. In fact, Codefresh works out-
of-the-box with Kubernetes, Helm, and Docker, without the need of any special plugins or
configurations. It is the only CI/CD solution that provides native Kubernetes, Helm, and
Docker dashboards.

• With our Kubernetes dashboard, you get:

• Full traceability into your clusters, as you can monitor what images are currently
running, and trace them all the way back to an individual commit.

• The ability to create and edit services, deployments, and more

• Visibility across clusters all in one place, along with their state, status, and any errors

• With our Helm dashboards, you get:

• A built-in Codefresh-hosted chart repository with built-in, one-click installation

• View the status of currently deployed releases

• One-click rollbacks of your production Kubernetes cluster

• A rolling version history (with di!s) of various chart versions

• Drag-and-drop Helm release promotions to di!erent environments

Kubernetes dashboard with full traceability into your clusters

12

Built-in Helm chart repository view, with one-click installation methods.

Helm release dashboard, where you can view the status of currently deployed releases.

Helm promotion dashboard, giving you an overview of where each release exists in your
development lifecycle, and the ability to promote di!erent releases to di!erent environments.

13

• With our Docker image dashboard, you get:

• Details such as the git branch, commit message, and hash that created it, date of
creation as well as any tags

• You can also select any image and look at its individual metadata

From your first commit
to your production
deployment, Codefresh
o!ers full traceability
of your software
development lifecycle.
You can view all phases
of development within a
single, unified platform.

With other CI/CD solutions, you
don’t receive the benefit of
this holistic view and have to
investigate using other platforms
just to trace what is going on
with a release.

Without Codefresh 3 di!erent solutions are needed

14

SaaS, On-prem, and Hybrid Installation Methods

There is always a debate as to whether or not to host the CI/CD system yourself, or o#oad
the work to a cloud-based/SaaS service. There are pros and cons to each approach,
namely, o#oading the work can be beneficial and faster, as you can access a shared pool
of the CI/CD tool’s hosted resources to run your pipelines. But, with this approach, there
are often security concerns around code/data accessibility and many companies feel safer
running their pipelines from their own machines. The downside to this approach is that any
and all maintenance is now your responsibility.

Any modern CI/CD tool should not lock its customers down into one installation method,
but give customers flexibility. In fact, to solve the debate between on-prem vs. SaaS
solutions, Codefresh o!ers the best of both worlds, by o!ering a Hybrid installation model.
With this mode:

• The Codefresh UI runs on the Codefresh infrastructure

• Actual builds happen via the customer’s location (behind the firewall, from a
Kubernetes cluster).

This keeps security concerns at bay, while still leaving all the heavy lifting and maintenance
of the platform up to Codefresh.

With the Hybrid mode, you can take advantage of specific custom infrastructure within
Codefresh, such as GPU nodes and other specialized hardware. You can also use SAAS
and Hybrid simultaneously, so some pipelines can run in the cloud, while others run behind
your firewall.

15

Zero Config, Distributed Caching

A modern CI/CD tool should contain a multitude of
caching mechanisms that take place as a part of your
pipelines. These caching mechanisms should be:

• Automatic, and require little to no configuration

• Distributed across all build nodes or pipeline steps

This allows for decreased network costs, improved
responsiveness, and increased hardware performance —
all in all, reducing your build times. Lengthy build times
are bad for your team for various reasons:

• Reduction in commit frequency

• Due to the cost in time it takes to build, developers will put o! building and submit
code in larger batches of work, creating a larger surface area for change

• This leads to more di"cult integration and a greater risk for merge conflicts

• Small improvements become costly, leading to increased life cycle time overall

Distributed caching is a great way to mitigate the risks of slow build times, and Codefresh
o!ers several types:

• Distributed Docker Image Caching

• During subsequent runs of a pipeline, Codefresh will automatically fetch Docker
images from a shared image cache

• Distributed Docker Layer Caching

• Mimics the way Docker Layer Caching behaves locally on your workstation — when
building images, Docker will cache intermediate layers making future builds much
faster

• Docker Layer Caching is distributed, meaning all build nodes in your pipelines share
the same cache. Any available node can pick up your next pipeline build, as all of
them share access to previously cached Docker layers.

16

• Traditional Build Caching

• Many CI solutions make you manually configure what folder you want to cache

• Codefresh o!ers an internal Docker volume, under /codefresh/volume that is
automatically cached for subsequent builds of the same pipeline

Monorepo Support
Monorepo-style projects take an approach where:

• Multiple projects are committed to the same repository

• Projects depend upon one another and can share a common codebase

• When changes are made, only specific projects a!ected by that change are rebuilt/
retested, as opposed to rebuilding the entire monorepo itself

The advantages of monorepos are:

• Developers only need to update and check-out one repository

• Single source of truth for all versions of your code and their dependent projects

• Atomic commits: changes to multiple projects can be checked in as one commit

• Merge code only once, as opposed to multiple times across multiple repositories

• Simplification of merge conflict handling

17

Monorepo support should be a key feature of any modern CI/CD tool, as it greatly
decreases the amount of builds occuring in your daily development cycles. If you use a CI/
CD tool without monorepo support, you will:

• Go through the entire build/test/deploy process for the entire repository when any
changes are introduced in any one microservice

• Have to create custom in-house tools that mimic the same functionality Codefresh
o!ers out-of-the-box

Transitioning to a monorepo from a multi-repo approach may require you to rethink how
you structure your CI/CD process. You only need to build the artifacts a!ected by that
change, as you are no longer building a single application, i.e. triggering pipelines to
execute only when changes happen in specific folders.

Codefresh simplifies this process for you, by providing easy-to-use monorepo support. In
the trigger of each pipeline, you define a glob expression that maps to the project’s files.
Only when the expression is matched, will the pipeline execute, meaning you can define
pipelines that run a sequence of operations only on the microservices you specify, despite
them being located in the same repository.

In the above diagram, we have four projects in our mono-repo. We create two separate
pipelines, that execute on di!erent triggers based on their glob expressions.

18

Conclusion
I hope this list was helpful in providing you with the information you need to choose an
e"cient, modern CI/CD tool. Obviously, you will need to select a tool that best fits your
needs as a team, but the items listed here are what I consider to be a bare-minimum in
terms of what your selected product has to o!er. Technology moves very fast, and it’s
important that your CI/CD tool of choice is up-to-date and evolves with new development
trends and practices.

Join us at https://codefresh.io

Author: Anna Baker
Anna Baker is a Software Engineer/Technical Writer. She
previously worked at Red Hat and is passionate about the open
source community. In her free time, she enjoys drawing and
cooking dishes from all over the world.

